AVAMGE.AMMI computes the Sum Across Environments of Absolute Value of GEI Modelled by AMMI (AVAMGE) (Zali et al. 2012) considering all significant interaction principal components (IPCs) in the AMMI model. Using AVAMGE, the Simultaneous Selection Index for Yield and Stability (SSI) is also calculated according to the argument ssi.method.

AVAMGE.AMMI(model, n, alpha = 0.05, ssi.method = c("farshadfar", "rao"), a = 1)

Arguments

model

The AMMI model (An object of class AMMI generated by AMMI).

n

The number of principal components to be considered for computation. The default value is the number of significant IPCs.

alpha

Type I error probability (Significance level) to be considered to identify the number of significant IPCs.

ssi.method

The method for the computation of simultaneous selection index. Either "farshadfar" or "rao" (See SSI).

a

The ratio of the weights given to the stability components for computation of SSI when method = "rao" (See SSI).

Value

A data frame with the following columns:

AVAMGE

The AVAMGE values.

SSI

The computed values of simultaneous selection index for yield and stability.

rAVAMGE

The ranks of AVAMGE values.

rY

The ranks of the mean yield of genotypes.

means

The mean yield of the genotypes.

The names of the genotypes are indicated as the row names of the data frame.

Details

The Sum Across Environments of Absolute Value of GEI Modelled by AMMI (\(AV_{(AMGE)}\)) (Zali et al. 2012) is computed as follows:

\[AV_{(AMGE)} = \sum_{j=1}^{E} \sum_{n=1}^{N'} \left |\lambda_{n} \gamma_{in} \delta_{jn} \right |\]

Where, \(N'\) is the number of significant IPCs (number of IPC that were retained in the AMMI model via F tests); \(\lambda_{n}\) is the singular value for \(n\)th IPC and correspondingly \(\lambda_{n}^{2}\) is its eigen value; \(\gamma_{in}\) is the eigenvector value for \(i\)th genotype; and \(\delta{jn}\) is the eigenvector value for the \(j\)th environment.

References

Zali H, Farshadfar E, Sabaghpour SH, Karimizadeh R (2012). “Evaluation of genotype × environment interaction in chickpea using measures of stability from AMMI model.” Annals of Biological Research, 3(7), 3126--3136.

See also

Examples

library(agricolae)
data(plrv)

# AMMI model
model <- with(plrv, AMMI(Locality, Genotype, Rep, Yield, console = FALSE))

# ANOVA
model$ANOVA
#> Analysis of Variance Table
#> 
#> Response: Y
#>            Df Sum Sq Mean Sq  F value    Pr(>F)    
#> ENV         5 122284 24456.9 257.0382  9.08e-12 ***
#> REP(ENV)   12   1142    95.1   2.5694  0.002889 ** 
#> GEN        27  17533   649.4  17.5359 < 2.2e-16 ***
#> ENV:GEN   135  23762   176.0   4.7531 < 2.2e-16 ***
#> Residuals 324  11998    37.0                       
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

# IPC F test
model$analysis
#>     percent  acum Df     Sum.Sq   Mean.Sq F.value   Pr.F
#> PC1    56.3  56.3 31 13368.5954 431.24501   11.65 0.0000
#> PC2    27.1  83.3 29  6427.5799 221.64069    5.99 0.0000
#> PC3     9.4  92.7 27  2241.9398  83.03481    2.24 0.0005
#> PC4     4.3  97.1 25  1027.5785  41.10314    1.11 0.3286
#> PC5     2.9 100.0 23   696.1012  30.26527    0.82 0.7059

# Mean yield and IPC scores
model$biplot
#>         type    Yield         PC1          PC2         PC3         PC4
#> 102.18   GEN 26.31947 -1.50828851  1.258765244 -0.19220309  0.48738861
#> 104.22   GEN 31.28887  0.32517729 -1.297024517 -0.63695749 -0.44159957
#> 121.31   GEN 30.10174  0.95604605  1.143461054 -1.28777348  2.22246913
#> 141.28   GEN 39.75624  2.11153737  0.817810467  1.45527701  0.25257620
#> 157.26   GEN 36.95181  1.05139017  2.461179974 -1.97208942 -1.96538800
#> 163.9    GEN 21.41747 -2.12407441 -0.284381234 -0.21791137 -0.50743629
#> 221.19   GEN 22.98480 -0.84981828  0.347983673 -0.82400783 -0.11451944
#> 233.11   GEN 28.66655  0.07554203 -1.046497338  1.04040485  0.22868362
#> 235.6    GEN 38.63477  1.20102029 -2.816581184  0.80975361  1.02013062
#> 241.2    GEN 26.34039 -0.79948495  0.220768053 -0.98538801  0.30004421
#> 255.7    GEN 30.58975 -1.49543817 -1.186549449  0.92552519 -0.32009239
#> 314.12   GEN 28.17335  1.39335380 -0.332786322 -0.73226877  0.05987348
#> 317.6    GEN 35.32583  1.05170769  0.002555823 -0.81561907  0.58180433
#> 319.20   GEN 38.75767  3.08338144  1.995946966  0.87971668 -1.11908943
#> 320.16   GEN 26.34808 -1.55737097  0.732314249 -0.41432567  1.32097009
#> 342.15   GEN 26.01336 -1.35880873 -0.741980068  0.87480105 -1.12013125
#> 346.2    GEN 23.84175 -2.48453928 -0.397045286  1.07091711 -0.90974484
#> 351.26   GEN 36.11581  1.22670345  1.537183139  1.79835728 -0.03516368
#> 364.21   GEN 34.05974  0.27328985 -0.447941156  0.03139543  0.77920500
#> 402.7    GEN 27.47748 -0.12907269 -0.080086669  0.01934016 -0.36085862
#> 405.2    GEN 28.98663 -1.90936369  0.309047963  0.57682642  0.51163370
#> 406.12   GEN 32.68323  0.90781100 -1.733433781 -0.24223050 -0.38596144
#> 427.7    GEN 36.19020  0.42791957 -0.723190970 -0.85381724 -0.53089914
#> 450.3    GEN 36.19602  1.38026196  1.279525147  0.16025163  0.61270137
#> 506.2    GEN 33.26623 -0.33054261 -0.302588536 -1.58471588 -0.04659416
#> Canchan  GEN 27.00126  1.47802905  0.380553178  1.67423900  0.07718375
#> Desiree  GEN 16.15569 -3.64968796  1.720025405  0.43761089  0.04648011
#> Unica    GEN 39.10400  1.25331924 -2.817033826 -0.99510845 -0.64366599
#> Ayac     ENV 23.70254 -2.29611851  0.966037760  1.95959116  2.75548057
#> Hyo-02   ENV 45.73082  3.85283195 -5.093371615  1.16967118 -0.08985538
#> LM-02    ENV 34.64462 -1.14575146 -0.881093222 -4.56547274  0.55159099
#> LM-03    ENV 53.83493  5.34625518  4.265275487 -0.14143931 -0.11714533
#> SR-02    ENV 14.95128 -2.58678337  0.660309540  0.89096920 -3.25055305
#> SR-03    ENV 11.15328 -3.17043379  0.082842050  0.68668051  0.15048221
#>                 PC5
#> 102.18  -0.04364115
#> 104.22   0.95312506
#> 121.31  -1.30661916
#> 141.28  -0.25996142
#> 157.26  -0.59719268
#> 163.9    0.18563390
#> 221.19  -0.57504816
#> 233.11   0.65754266
#> 235.6   -0.40273415
#> 241.2    0.07555258
#> 255.7   -0.46344763
#> 314.12   0.54406154
#> 317.6    0.39627052
#> 319.20   0.29657050
#> 320.16   2.29506737
#> 342.15  -0.10776433
#> 346.2   -0.12738693
#> 351.26   0.30191335
#> 364.21  -0.95811256
#> 402.7   -0.28473777
#> 405.2   -0.34397623
#> 406.12  -0.49796296
#> 427.7    1.00677993
#> 450.3   -0.34325251
#> 506.2    0.87807441
#> Canchan  0.49381313
#> Desiree -0.86767477
#> Unica   -0.90489253
#> Ayac     1.67177210
#> Hyo-02   0.01540152
#> LM-02    0.52350416
#> LM-03   -0.40285728
#> SR-02    1.37283488
#> SR-03   -3.18065538

# G*E matrix (deviations from mean)
array(model$genXenv, dim(model$genXenv), dimnames(model$genXenv))
#>          ENV
#> GEN              Ayac      Hyo-02       LM-02       LM-03        SR-02
#>   102.18    5.5726162 -12.4918224   1.7425251  -2.7070438   2.91734869
#>   104.22   -2.8712076   7.1684102   3.9336218  -4.0358373   0.47881580
#>   121.31    0.3255230  -3.8666836   4.3182811  10.4366135 -11.88343843
#>   141.28   -0.9451837   5.6454825  -9.7806639  14.6463104  -4.80337115
#>   157.26  -10.3149711 -10.6241677   4.2336365  16.8683612   2.71710210
#>   163.9     3.0874931  -6.9416721   3.4963790 -12.5533271   7.01688164
#>   221.19   -0.6041752  -6.0090018   4.0648518  -2.6974743   1.27671246
#>   233.11    2.5837535   6.8277609  -3.4440645  -4.4985717   0.19989490
#>   235.6    -1.7541523  19.8225025  -2.2394463  -5.6643239  -8.11400542
#>   241.2     1.0710975  -5.3831118   5.4253097  -3.2588271   0.46433086
#>   255.7     2.4443155   1.3860497  -1.8857757 -12.9626594   4.31373929
#>   314.12   -3.8812099   6.2098482   2.3577759   5.9071782  -3.92419060
#>   317.6    -1.7450319   3.0388540   3.0448064   5.5211634  -4.79271565
#>   319.20   -6.0155949   2.8477540  -9.7697504  24.8850017  -1.82949467
#>   320.16   10.9481796 -10.2982108   4.9608280  -6.2233088   2.99984918
#>   342.15    0.8508002  -0.3338618  -2.4575390 -10.3783871   7.29753151
#>   346.2     4.7000495  -6.2178087  -2.2612391 -14.9700672   9.90123888
#>   351.26    2.6002030  -0.9918665 -10.8315931  12.7429121  -0.02713985
#>   364.21   -0.4533734   3.2864208  -0.1335527  -0.1592533  -4.82292664
#>   402.7    -1.2134573  -0.0387229  -0.2179557  -0.8774011   1.08032472
#>   405.2     6.6477681  -8.3071271  -0.6159895  -8.8927189   3.52179705
#>   406.12   -6.1296667  12.0703469   1.1195092  -2.2601009  -3.13776595
#>   427.7    -3.1340922   4.3967072   4.2792028  -1.0194744   0.76266844
#>   450.3    -0.5047010  -1.0720791  -3.2821761  12.8806007  -5.04562407
#>   506.2    -1.2991912  -1.5682154   8.3142802  -3.1819279   0.60021498
#>   Canchan   1.2929442   5.7152780  -9.3713622   9.0803035  -1.65332869
#>   Desiree   9.5767845 -22.3280421   0.2396387 -11.8935722   9.62433886
#>   Unica   -10.8355195  18.0569790   4.7604622  -4.7341684  -5.13878822
#>          ENV
#> GEN             SR-03
#>   102.18    4.9663762
#>   104.22   -4.6738028
#>   121.31    0.6697043
#>   141.28   -4.7625741
#>   157.26   -2.8799609
#>   163.9     5.8942454
#>   221.19    3.9690870
#>   233.11   -1.6687730
#>   235.6    -2.0505746
#>   241.2     1.6812008
#>   255.7     6.7043306
#>   314.12   -6.6694018
#>   317.6    -5.0670763
#>   319.20  -10.1179157
#>   320.16   -2.3873373
#>   342.15    5.0214562
#>   346.2     8.8478267
#>   351.26   -3.4925156
#>   364.21    2.2826853
#>   402.7     1.2672123
#>   405.2     7.6462704
#>   406.12   -1.6623226
#>   427.7    -5.2850119
#>   450.3    -2.9760204
#>   506.2    -2.8651608
#>   Canchan  -5.0638348
#>   Desiree  14.7808522
#>   Unica    -2.1089651

# With default n (N') and default ssi.method (farshadfar)
AVAMGE.AMMI(model)
#>            AVAMGE SSI rAVAMGE rY    means
#> 102.18  30.229771  40      17 23 26.31947
#> 104.22  21.584579  21       8 13 31.28887
#> 121.31  27.893984  28      13 15 30.10174
#> 141.28  40.486706  24      23  1 39.75624
#> 157.26  44.055803  29      24  5 36.95181
#> 163.9   39.056228  48      21 27 21.41747
#> 221.19  17.905975  33       7 26 22.98480
#> 233.11  16.242635  21       4 17 28.66655
#> 235.6   39.840739  26      22  4 38.63477
#> 241.2   17.101113  28       6 22 26.34039
#> 255.7   29.306918  29      15 14 30.58975
#> 314.12  28.760304  32      14 18 28.17335
#> 317.6   22.700856  18       9  9 35.32583
#> 319.20  55.232023  30      27  3 38.75767
#> 320.16  30.717681  40      19 21 26.34808
#> 342.15  25.538281  34      10 24 26.01336
#> 346.2   46.236590  50      25 25 23.84175
#> 351.26  30.105573  24      16  8 36.11581
#> 364.21   6.742386  12       2 10 34.05974
#> 402.7    2.202291  20       1 19 27.47748
#> 405.2   35.890684  36      20 16 28.98663
#> 406.12  27.272847  24      12 12 32.68323
#> 427.7   16.756971  12       5  7 36.19020
#> 450.3   25.628188  17      11  6 36.19602
#> 506.2   15.760611  14       3 11 33.26623
#> Canchan 30.515224  38      18 20 27.00126
#> Desiree 69.096357  56      28 28 16.15569
#> Unica   47.204593  28      26  2 39.10400

# With n = 4 and default ssi.method (farshadfar)
AVAMGE.AMMI(model, n = 4)
#>            AVAMGE SSI rAVAMGE rY    means
#> 102.18  30.431550  39      16 23 26.31947
#> 104.22  21.176775  21       8 13 31.28887
#> 121.31  34.844853  34      19 15 30.10174
#> 141.28  40.382139  24      23  1 39.75624
#> 157.26  49.421992  31      26  5 36.95181
#> 163.9   38.846149  48      21 27 21.41747
#> 221.19  17.858564  33       7 26 22.98480
#> 233.11  17.449539  23       6 17 28.66655
#> 235.6   39.657410  26      22  4 38.63477
#> 241.2   17.225331  27       5 22 26.34039
#> 255.7   29.585043  28      14 14 30.58975
#> 314.12  28.801567  31      13 18 28.17335
#> 317.6   23.101824  18       9  9 35.32583
#> 319.20  55.695327  30      27  3 38.75767
#> 320.16  31.566364  39      18 21 26.34808
#> 342.15  26.310253  35      11 24 26.01336
#> 346.2   46.863568  50      25 25 23.84175
#> 351.26  29.920025  23      15  8 36.11581
#> 364.21   9.635146  12       2 10 34.05974
#> 402.7    3.665565  20       1 19 27.47748
#> 405.2   35.538076  36      20 16 28.98663
#> 406.12  26.916422  24      12 12 32.68323
#> 427.7   16.266701  11       4  7 36.19020
#> 450.3   25.622916  16      10  6 36.19602
#> 506.2   15.709209  14       3 11 33.26623
#> Canchan 30.908627  37      17 20 27.00126
#> Desiree 69.115600  56      28 28 16.15569
#> Unica   46.610186  26      24  2 39.10400

# With default n (N') and ssi.method = "rao"
AVAMGE.AMMI(model, ssi.method = "rao")
#>            AVAMGE       SSI rAVAMGE rY    means
#> 102.18  30.229771 1.4579240      17 23 26.31947
#> 104.22  21.584579 1.8601746       8 13 31.28887
#> 121.31  27.893984 1.6314700      13 15 30.10174
#> 141.28  40.486706 1.7440938      23  1 39.75624
#> 157.26  44.055803 1.6163747      24  5 36.95181
#> 163.9   39.056228 1.1625489      21 27 21.41747
#> 221.19  17.905975 1.7619814       7 26 22.98480
#> 233.11  16.242635 2.0509293       4 17 28.66655
#> 235.6   39.840739 1.7147885      22  4 38.63477
#> 241.2   17.101113 1.9190480       6 22 26.34039
#> 255.7   29.306918 1.6160450      15 14 30.58975
#> 314.12  28.760304 1.5490150      14 18 28.17335
#> 317.6   22.700856 1.9504975       9  9 35.32583
#> 319.20  55.232023 1.5919808      27  3 38.75767
#> 320.16  30.717681 1.4493304      19 21 26.34808
#> 342.15  25.538281 1.5581219      10 24 26.01336
#> 346.2   46.236590 1.1695027      25 25 23.84175
#> 351.26  30.105573 1.7798138      16  8 36.11581
#> 364.21   6.742386 3.7995961       2 10 34.05974
#> 402.7    2.202291 9.1285592       1 19 27.47748
#> 405.2   35.890684 1.4502899      20 16 28.98663
#> 406.12  27.272847 1.7304443      12 12 32.68323
#> 427.7   16.756971 2.2619806       5  7 36.19020
#> 450.3   25.628188 1.8876432      11  6 36.19602
#> 506.2   15.760611 2.2350438       3 11 33.26623
#> Canchan 30.515224 1.4745437      18 20 27.00126
#> Desiree 69.096357 0.7891628      28 28 16.15569
#> Unica   47.204593 1.6590963      26  2 39.10400

# Changing the ratio of weights for Rao's SSI
AVAMGE.AMMI(model, ssi.method = "rao", a = 0.43)
#>            AVAMGE       SSI rAVAMGE rY    means
#> 102.18  30.229771 1.1160597      17 23 26.31947
#> 104.22  21.584579 1.3813847       8 13 31.28887
#> 121.31  27.893984 1.2609787      13 15 30.10174
#> 141.28  40.486706 1.4888376      23  1 39.75624
#> 157.26  44.055803 1.3817977      24  5 36.95181
#> 163.9   39.056228 0.8979438      21 27 21.41747
#> 221.19  17.905975 1.1848289       7 26 22.98480
#> 233.11  16.242635 1.4146730       4 17 28.66655
#> 235.6   39.840739 1.4553938      22  4 38.63477
#> 241.2   17.101113 1.3147318       6 22 26.34039
#> 255.7   29.306918 1.2634156      15 14 30.58975
#> 314.12  28.760304 1.1896837      14 18 28.17335
#> 317.6   22.700856 1.4952513       9  9 35.32583
#> 319.20  55.232023 1.4048705      27  3 38.75767
#> 320.16  30.717681 1.1128962      19 21 26.34808
#> 342.15  25.538281 1.1534557      10 24 26.01336
#> 346.2   46.236590 0.9459897      25 25 23.84175
#> 351.26  30.105573 1.4365392      16  8 36.11581
#> 364.21   6.742386 2.2668332       2 10 34.05974
#> 402.7    2.202291 4.4359547       1 19 27.47748
#> 405.2   35.890684 1.1623466      20 16 28.98663
#> 406.12  27.272847 1.3515151      12 12 32.68323
#> 427.7   16.756971 1.6452535       5  7 36.19020
#> 450.3   25.628188 1.4843966      11  6 36.19602
#> 506.2   15.760611 1.5793281       3 11 33.26623
#> Canchan 30.515224 1.1358773      18 20 27.00126
#> Desiree 69.096357 0.6395966      28 28 16.15569
#> Unica   47.204593 1.4401668      26  2 39.10400