DA.AMMI computes the Annicchiarico's D Parameter values (\(\textrm{D}_{\textrm{a}}\)) (Annicchiarico 1997) considering all significant interaction principal components (IPCs) in the AMMI model. It is the unsquared Euclidean distance from the origin of significant IPC axes in the AMMI model. Using \(\textrm{D}_{\textrm{a}}\), the Simultaneous Selection Index for Yield and Stability (SSI) is also calculated according to the argument ssi.method.

DA.AMMI(model, n, alpha = 0.05, ssi.method = c("farshadfar", "rao"), a = 1)

Arguments

model

The AMMI model (An object of class AMMI generated by AMMI).

n

The number of principal components to be considered for computation. The default value is the number of significant IPCs.

alpha

Type I error probability (Significance level) to be considered to identify the number of significant IPCs.

ssi.method

The method for the computation of simultaneous selection index. Either "farshadfar" or "rao" (See SSI).

a

The ratio of the weights given to the stability components for computation of SSI when method = "rao" (See SSI).

Value

A data frame with the following columns:

DA

The DA values.

SSI

The computed values of simultaneous selection index for yield and stability.

rDA

The ranks of DA values.

rY

The ranks of the mean yield of genotypes.

means

The mean yield of the genotypes.

The names of the genotypes are indicated as the row names of the data frame.

Details

The Annicchiarico's D Parameter value (\(D_{a}\)) (Annicchiarico 1997) is computed as follows:

\[D_{a} = \sqrt{\sum_{n=1}^{N'}(\lambda_{n}\gamma_{in})^2}\]

Where, \(N'\) is the number of significant IPCs (number of IPC that were retained in the AMMI model via F tests); \(\lambda_{n}\) is the singular value for \(n\)th IPC and correspondingly \(\lambda_{n}^{2}\) is its eigen value; and \(\gamma_{in}\) is the eigenvector value for \(i\)th genotype.

References

Annicchiarico P (1997). “Joint regression vs AMMI analysis of genotype-environment interactions for cereals in Italy.” Euphytica, 94(1), 53--62.

See also

Examples

library(agricolae)
data(plrv)

# AMMI model
model <- with(plrv, AMMI(Locality, Genotype, Rep, Yield, console = FALSE))

# ANOVA
model$ANOVA
#> Analysis of Variance Table
#> 
#> Response: Y
#>            Df Sum Sq Mean Sq  F value    Pr(>F)    
#> ENV         5 122284 24456.9 257.0382  9.08e-12 ***
#> REP(ENV)   12   1142    95.1   2.5694  0.002889 ** 
#> GEN        27  17533   649.4  17.5359 < 2.2e-16 ***
#> ENV:GEN   135  23762   176.0   4.7531 < 2.2e-16 ***
#> Residuals 324  11998    37.0                       
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

# IPC F test
model$analysis
#>     percent  acum Df     Sum.Sq   Mean.Sq F.value   Pr.F
#> PC1    56.3  56.3 31 13368.5954 431.24501   11.65 0.0000
#> PC2    27.1  83.3 29  6427.5799 221.64069    5.99 0.0000
#> PC3     9.4  92.7 27  2241.9398  83.03481    2.24 0.0005
#> PC4     4.3  97.1 25  1027.5785  41.10314    1.11 0.3286
#> PC5     2.9 100.0 23   696.1012  30.26527    0.82 0.7059

# Mean yield and IPC scores
model$biplot
#>         type    Yield         PC1          PC2         PC3         PC4
#> 102.18   GEN 26.31947 -1.50828851  1.258765244 -0.19220309  0.48738861
#> 104.22   GEN 31.28887  0.32517729 -1.297024517 -0.63695749 -0.44159957
#> 121.31   GEN 30.10174  0.95604605  1.143461054 -1.28777348  2.22246913
#> 141.28   GEN 39.75624  2.11153737  0.817810467  1.45527701  0.25257620
#> 157.26   GEN 36.95181  1.05139017  2.461179974 -1.97208942 -1.96538800
#> 163.9    GEN 21.41747 -2.12407441 -0.284381234 -0.21791137 -0.50743629
#> 221.19   GEN 22.98480 -0.84981828  0.347983673 -0.82400783 -0.11451944
#> 233.11   GEN 28.66655  0.07554203 -1.046497338  1.04040485  0.22868362
#> 235.6    GEN 38.63477  1.20102029 -2.816581184  0.80975361  1.02013062
#> 241.2    GEN 26.34039 -0.79948495  0.220768053 -0.98538801  0.30004421
#> 255.7    GEN 30.58975 -1.49543817 -1.186549449  0.92552519 -0.32009239
#> 314.12   GEN 28.17335  1.39335380 -0.332786322 -0.73226877  0.05987348
#> 317.6    GEN 35.32583  1.05170769  0.002555823 -0.81561907  0.58180433
#> 319.20   GEN 38.75767  3.08338144  1.995946966  0.87971668 -1.11908943
#> 320.16   GEN 26.34808 -1.55737097  0.732314249 -0.41432567  1.32097009
#> 342.15   GEN 26.01336 -1.35880873 -0.741980068  0.87480105 -1.12013125
#> 346.2    GEN 23.84175 -2.48453928 -0.397045286  1.07091711 -0.90974484
#> 351.26   GEN 36.11581  1.22670345  1.537183139  1.79835728 -0.03516368
#> 364.21   GEN 34.05974  0.27328985 -0.447941156  0.03139543  0.77920500
#> 402.7    GEN 27.47748 -0.12907269 -0.080086669  0.01934016 -0.36085862
#> 405.2    GEN 28.98663 -1.90936369  0.309047963  0.57682642  0.51163370
#> 406.12   GEN 32.68323  0.90781100 -1.733433781 -0.24223050 -0.38596144
#> 427.7    GEN 36.19020  0.42791957 -0.723190970 -0.85381724 -0.53089914
#> 450.3    GEN 36.19602  1.38026196  1.279525147  0.16025163  0.61270137
#> 506.2    GEN 33.26623 -0.33054261 -0.302588536 -1.58471588 -0.04659416
#> Canchan  GEN 27.00126  1.47802905  0.380553178  1.67423900  0.07718375
#> Desiree  GEN 16.15569 -3.64968796  1.720025405  0.43761089  0.04648011
#> Unica    GEN 39.10400  1.25331924 -2.817033826 -0.99510845 -0.64366599
#> Ayac     ENV 23.70254 -2.29611851  0.966037760  1.95959116  2.75548057
#> Hyo-02   ENV 45.73082  3.85283195 -5.093371615  1.16967118 -0.08985538
#> LM-02    ENV 34.64462 -1.14575146 -0.881093222 -4.56547274  0.55159099
#> LM-03    ENV 53.83493  5.34625518  4.265275487 -0.14143931 -0.11714533
#> SR-02    ENV 14.95128 -2.58678337  0.660309540  0.89096920 -3.25055305
#> SR-03    ENV 11.15328 -3.17043379  0.082842050  0.68668051  0.15048221
#>                 PC5
#> 102.18  -0.04364115
#> 104.22   0.95312506
#> 121.31  -1.30661916
#> 141.28  -0.25996142
#> 157.26  -0.59719268
#> 163.9    0.18563390
#> 221.19  -0.57504816
#> 233.11   0.65754266
#> 235.6   -0.40273415
#> 241.2    0.07555258
#> 255.7   -0.46344763
#> 314.12   0.54406154
#> 317.6    0.39627052
#> 319.20   0.29657050
#> 320.16   2.29506737
#> 342.15  -0.10776433
#> 346.2   -0.12738693
#> 351.26   0.30191335
#> 364.21  -0.95811256
#> 402.7   -0.28473777
#> 405.2   -0.34397623
#> 406.12  -0.49796296
#> 427.7    1.00677993
#> 450.3   -0.34325251
#> 506.2    0.87807441
#> Canchan  0.49381313
#> Desiree -0.86767477
#> Unica   -0.90489253
#> Ayac     1.67177210
#> Hyo-02   0.01540152
#> LM-02    0.52350416
#> LM-03   -0.40285728
#> SR-02    1.37283488
#> SR-03   -3.18065538

# G*E matrix (deviations from mean)
array(model$genXenv, dim(model$genXenv), dimnames(model$genXenv))
#>          ENV
#> GEN              Ayac      Hyo-02       LM-02       LM-03        SR-02
#>   102.18    5.5726162 -12.4918224   1.7425251  -2.7070438   2.91734869
#>   104.22   -2.8712076   7.1684102   3.9336218  -4.0358373   0.47881580
#>   121.31    0.3255230  -3.8666836   4.3182811  10.4366135 -11.88343843
#>   141.28   -0.9451837   5.6454825  -9.7806639  14.6463104  -4.80337115
#>   157.26  -10.3149711 -10.6241677   4.2336365  16.8683612   2.71710210
#>   163.9     3.0874931  -6.9416721   3.4963790 -12.5533271   7.01688164
#>   221.19   -0.6041752  -6.0090018   4.0648518  -2.6974743   1.27671246
#>   233.11    2.5837535   6.8277609  -3.4440645  -4.4985717   0.19989490
#>   235.6    -1.7541523  19.8225025  -2.2394463  -5.6643239  -8.11400542
#>   241.2     1.0710975  -5.3831118   5.4253097  -3.2588271   0.46433086
#>   255.7     2.4443155   1.3860497  -1.8857757 -12.9626594   4.31373929
#>   314.12   -3.8812099   6.2098482   2.3577759   5.9071782  -3.92419060
#>   317.6    -1.7450319   3.0388540   3.0448064   5.5211634  -4.79271565
#>   319.20   -6.0155949   2.8477540  -9.7697504  24.8850017  -1.82949467
#>   320.16   10.9481796 -10.2982108   4.9608280  -6.2233088   2.99984918
#>   342.15    0.8508002  -0.3338618  -2.4575390 -10.3783871   7.29753151
#>   346.2     4.7000495  -6.2178087  -2.2612391 -14.9700672   9.90123888
#>   351.26    2.6002030  -0.9918665 -10.8315931  12.7429121  -0.02713985
#>   364.21   -0.4533734   3.2864208  -0.1335527  -0.1592533  -4.82292664
#>   402.7    -1.2134573  -0.0387229  -0.2179557  -0.8774011   1.08032472
#>   405.2     6.6477681  -8.3071271  -0.6159895  -8.8927189   3.52179705
#>   406.12   -6.1296667  12.0703469   1.1195092  -2.2601009  -3.13776595
#>   427.7    -3.1340922   4.3967072   4.2792028  -1.0194744   0.76266844
#>   450.3    -0.5047010  -1.0720791  -3.2821761  12.8806007  -5.04562407
#>   506.2    -1.2991912  -1.5682154   8.3142802  -3.1819279   0.60021498
#>   Canchan   1.2929442   5.7152780  -9.3713622   9.0803035  -1.65332869
#>   Desiree   9.5767845 -22.3280421   0.2396387 -11.8935722   9.62433886
#>   Unica   -10.8355195  18.0569790   4.7604622  -4.7341684  -5.13878822
#>          ENV
#> GEN             SR-03
#>   102.18    4.9663762
#>   104.22   -4.6738028
#>   121.31    0.6697043
#>   141.28   -4.7625741
#>   157.26   -2.8799609
#>   163.9     5.8942454
#>   221.19    3.9690870
#>   233.11   -1.6687730
#>   235.6    -2.0505746
#>   241.2     1.6812008
#>   255.7     6.7043306
#>   314.12   -6.6694018
#>   317.6    -5.0670763
#>   319.20  -10.1179157
#>   320.16   -2.3873373
#>   342.15    5.0214562
#>   346.2     8.8478267
#>   351.26   -3.4925156
#>   364.21    2.2826853
#>   402.7     1.2672123
#>   405.2     7.6462704
#>   406.12   -1.6623226
#>   427.7    -5.2850119
#>   450.3    -2.9760204
#>   506.2    -2.8651608
#>   Canchan  -5.0638348
#>   Desiree  14.7808522
#>   Unica    -2.1089651

# With default n (N') and default ssi.method (farshadfar)
DA.AMMI(model)
#>                DA SSI rDA rY    means
#> 102.18  15.040431  39  16 23 26.31947
#> 104.22   9.798867  22   9 13 31.28887
#> 121.31  12.917859  26  11 15 30.10174
#> 141.28  19.659222  23  22  1 39.75624
#> 157.26  21.459064  29  24  5 36.95181
#> 163.9   17.499098  48  21 27 21.41747
#> 221.19   8.507426  31   5 26 22.98480
#> 233.11   8.981297  24   7 17 28.66655
#> 235.6   21.941275  29  25  4 38.63477
#> 241.2    8.453875  26   4 22 26.34039
#> 255.7   15.423064  32  18 14 30.58975
#> 314.12  12.222308  28  10 18 28.17335
#> 317.6    9.592839  17   8  9 35.32583
#> 319.20  28.986374  30  27  3 38.75767
#> 320.16  13.835583  34  13 21 26.34808
#> 342.15  13.025230  36  12 24 26.01336
#> 346.2   21.230207  48  23 25 23.84175
#> 351.26  17.269543  28  20  8 36.11581
#> 364.21   3.781576  12   2 10 34.05974
#> 402.7    1.191312  20   1 19 27.47748
#> 405.2   16.027557  35  19 16 28.98663
#> 406.12  13.989359  26  14 12 32.68323
#> 427.7    7.507408  10   3  7 36.19020
#> 450.3   14.270920  21  15  6 36.19602
#> 506.2    8.954538  17   6 11 33.26623
#> Canchan 15.138085  37  17 20 27.00126
#> Desiree 32.114860  56  28 28 16.15569
#> Unica   22.343936  28  26  2 39.10400

# With n = 4 and default ssi.method (farshadfar)
DA.AMMI(model, n = 4)
#>                DA SSI rDA rY    means
#> 102.18  15.185880  39  16 23 26.31947
#> 104.22   9.981329  22   9 13 31.28887
#> 121.31  16.071287  33  18 15 30.10174
#> 141.28  19.689228  23  22  1 39.75624
#> 157.26  23.064716  31  26  5 36.95181
#> 163.9   17.634737  48  21 27 21.41747
#> 221.19   8.521680  30   4 26 22.98480
#> 233.11   9.035019  24   7 17 28.66655
#> 235.6   22.375871  28  24  4 38.63477
#> 241.2    8.551852  27   5 22 26.34039
#> 255.7   15.484417  31  17 14 30.58975
#> 314.12  12.225021  28  10 18 28.17335
#> 317.6    9.913993  17   8  9 35.32583
#> 319.20  29.383463  30  27  3 38.75767
#> 320.16  14.957211  35  14 21 26.34808
#> 342.15  13.888046  35  11 24 26.01336
#> 346.2   21.587939  48  23 25 23.84175
#> 351.26  17.270205  28  20  8 36.11581
#> 364.21   5.053446  12   2 10 34.05974
#> 402.7    1.956846  20   1 19 27.47748
#> 405.2   16.177987  35  19 16 28.98663
#> 406.12  14.087553  24  12 12 32.68323
#> 427.7    7.847138  10   3  7 36.19020
#> 450.3   14.512302  19  13  6 36.19602
#> 506.2    8.956781  17   6 11 33.26623
#> Canchan 15.141726  35  15 20 27.00126
#> Desiree 32.115482  56  28 28 16.15569
#> Unica   22.514867  27  25  2 39.10400

# With default n (N') and ssi.method = "rao"
DA.AMMI(model, ssi.method = "rao")
#>                DA       SSI rDA rY    means
#> 102.18  15.040431 1.4730947  16 23 26.31947
#> 104.22   9.798867 1.9640618   9 13 31.28887
#> 121.31  12.917859 1.6974593  11 15 30.10174
#> 141.28  19.659222 1.7667347  22  1 39.75624
#> 157.26  21.459064 1.6358359  24  5 36.95181
#> 163.9   17.499098 1.2268624  21 27 21.41747
#> 221.19   8.507426 1.8365835   5 26 22.98480
#> 233.11   8.981297 1.9644804   7 17 28.66655
#> 235.6   21.941275 1.6812376  25  4 38.63477
#> 241.2    8.453875 1.9528811   4 22 26.34039
#> 255.7   15.423064 1.5970737  18 14 30.58975
#> 314.12  12.222308 1.6753281  10 18 28.17335
#> 317.6    9.592839 2.1159612   8  9 35.32583
#> 319.20  28.986374 1.5827930  27  3 38.75767
#> 320.16  13.835583 1.5275780  13 21 26.34808
#> 342.15  13.025230 1.5582533  12 24 26.01336
#> 346.2   21.230207 1.2130205  23 25 23.84175
#> 351.26  17.269543 1.7131362  20  8 36.11581
#> 364.21   3.781576 3.5563052   2 10 34.05974
#> 402.7    1.191312 8.6595018   1 19 27.47748
#> 405.2   16.027557 1.5221857  19 16 28.98663
#> 406.12  13.989359 1.7267910  14 12 32.68323
#> 427.7    7.507408 2.4119665   3  7 36.19020
#> 450.3   14.270920 1.8282838  15  6 36.19602
#> 506.2    8.954538 2.1175331   6 11 33.26623
#> Canchan 15.138085 1.4913580  17 20 27.00126
#> Desiree 32.114860 0.8147588  28 28 16.15569
#> Unica   22.343936 1.6889406  26  2 39.10400

# Changing the ratio of weights for Rao's SSI
DA.AMMI(model, ssi.method = "rao", a = 0.43)
#>                DA       SSI rDA rY    means
#> 102.18  15.040431 1.1225831  16 23 26.31947
#> 104.22   9.798867 1.4260562   9 13 31.28887
#> 121.31  12.917859 1.2893541  11 15 30.10174
#> 141.28  19.659222 1.4985733  22  1 39.75624
#> 157.26  21.459064 1.3901660  24  5 36.95181
#> 163.9   17.499098 0.9255986  21 27 21.41747
#> 221.19   8.507426 1.2169078   5 26 22.98480
#> 233.11   8.981297 1.3775000   7 17 28.66655
#> 235.6   21.941275 1.4409668  25  4 38.63477
#> 241.2    8.453875 1.3292801   4 22 26.34039
#> 255.7   15.423064 1.2552580  18 14 30.58975
#> 314.12  12.222308 1.2439983  10 18 28.17335
#> 317.6    9.592839 1.5664007   8  9 35.32583
#> 319.20  28.986374 1.4009197  27  3 38.75767
#> 320.16  13.835583 1.1465427  13 21 26.34808
#> 342.15  13.025230 1.1535122  12 24 26.01336
#> 346.2   21.230207 0.9647024  23 25 23.84175
#> 351.26  17.269543 1.4078678  20  8 36.11581
#> 364.21   3.781576 2.1622181   2 10 34.05974
#> 402.7    1.191312 4.2342600   1 19 27.47748
#> 405.2   16.027557 1.1932619  19 16 28.98663
#> 406.12  13.989359 1.3499442  14 12 32.68323
#> 427.7    7.507408 1.7097474   3  7 36.19020
#> 450.3   14.270920 1.4588721  15  6 36.19602
#> 506.2    8.954538 1.5287986   6 11 33.26623
#> Canchan 15.138085 1.1431075  17 20 27.00126
#> Desiree 32.114860 0.6506029  28 28 16.15569
#> Unica   22.343936 1.4529998  26  2 39.10400