DZ.AMMI computes the Zhang's D Parameter values or AMMI statistic coefficient or AMMI distance or AMMI stability index (\(\textrm{D}_{\textrm{z}}\)) (Zhang et al. 1998) considering all significant interaction principal components (IPCs) in the AMMI model. It is the distance of IPC point from origin in space. Using \(\textrm{D}_{\textrm{z}}\), the Simultaneous Selection Index for Yield and Stability (SSI) is also calculated according to the argument ssi.method.

DZ.AMMI(model, n, alpha = 0.05, ssi.method = c("farshadfar", "rao"), a = 1)

Arguments

model

The AMMI model (An object of class AMMI generated by AMMI).

n

The number of principal components to be considered for computation. The default value is the number of significant IPCs.

alpha

Type I error probability (Significance level) to be considered to identify the number of significant IPCs.

ssi.method

The method for the computation of simultaneous selection index. Either "farshadfar" or "rao" (See SSI).

a

The ratio of the weights given to the stability components for computation of SSI when method = "rao" (See SSI).

Value

A data frame with the following columns:

DZ

The DZ values.

SSI

The computed values of simultaneous selection index for yield and stability.

rDZ

The ranks of DZ values.

rY

The ranks of the mean yield of genotypes.

means

The mean yield of the genotypes.

The names of the genotypes are indicated as the row names of the data frame.

Details

The Zhang's D Parameter value (\(D_{z}\)) (Zhang et al. 1998) is computed as follows:

\[D_{z} = \sqrt{\sum_{n=1}^{N'}\gamma_{in}^{2}}\]

Where, \(N'\) is the number of significant IPCs (number of IPC that were retained in the AMMI model via F tests); and \(\gamma_{in}\) is the eigenvector value for \(i\)th genotype.

References

Zhang Z, Lu C, Xiang Z (1998). “Analysis of variety stability based on AMMI model.” Acta Agronomica Sinica, 24(3), 304--309.

See also

Examples

library(agricolae)
data(plrv)

# AMMI model
model <- with(plrv, AMMI(Locality, Genotype, Rep, Yield, console = FALSE))

# ANOVA
model$ANOVA
#> Analysis of Variance Table
#> 
#> Response: Y
#>            Df Sum Sq Mean Sq  F value    Pr(>F)    
#> ENV         5 122284 24456.9 257.0382  9.08e-12 ***
#> REP(ENV)   12   1142    95.1   2.5694  0.002889 ** 
#> GEN        27  17533   649.4  17.5359 < 2.2e-16 ***
#> ENV:GEN   135  23762   176.0   4.7531 < 2.2e-16 ***
#> Residuals 324  11998    37.0                       
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

# IPC F test
model$analysis
#>     percent  acum Df     Sum.Sq   Mean.Sq F.value   Pr.F
#> PC1    56.3  56.3 31 13368.5954 431.24501   11.65 0.0000
#> PC2    27.1  83.3 29  6427.5799 221.64069    5.99 0.0000
#> PC3     9.4  92.7 27  2241.9398  83.03481    2.24 0.0005
#> PC4     4.3  97.1 25  1027.5785  41.10314    1.11 0.3286
#> PC5     2.9 100.0 23   696.1012  30.26527    0.82 0.7059

# Mean yield and IPC scores
model$biplot
#>         type    Yield         PC1          PC2         PC3         PC4
#> 102.18   GEN 26.31947 -1.50828851  1.258765244 -0.19220309  0.48738861
#> 104.22   GEN 31.28887  0.32517729 -1.297024517 -0.63695749 -0.44159957
#> 121.31   GEN 30.10174  0.95604605  1.143461054 -1.28777348  2.22246913
#> 141.28   GEN 39.75624  2.11153737  0.817810467  1.45527701  0.25257620
#> 157.26   GEN 36.95181  1.05139017  2.461179974 -1.97208942 -1.96538800
#> 163.9    GEN 21.41747 -2.12407441 -0.284381234 -0.21791137 -0.50743629
#> 221.19   GEN 22.98480 -0.84981828  0.347983673 -0.82400783 -0.11451944
#> 233.11   GEN 28.66655  0.07554203 -1.046497338  1.04040485  0.22868362
#> 235.6    GEN 38.63477  1.20102029 -2.816581184  0.80975361  1.02013062
#> 241.2    GEN 26.34039 -0.79948495  0.220768053 -0.98538801  0.30004421
#> 255.7    GEN 30.58975 -1.49543817 -1.186549449  0.92552519 -0.32009239
#> 314.12   GEN 28.17335  1.39335380 -0.332786322 -0.73226877  0.05987348
#> 317.6    GEN 35.32583  1.05170769  0.002555823 -0.81561907  0.58180433
#> 319.20   GEN 38.75767  3.08338144  1.995946966  0.87971668 -1.11908943
#> 320.16   GEN 26.34808 -1.55737097  0.732314249 -0.41432567  1.32097009
#> 342.15   GEN 26.01336 -1.35880873 -0.741980068  0.87480105 -1.12013125
#> 346.2    GEN 23.84175 -2.48453928 -0.397045286  1.07091711 -0.90974484
#> 351.26   GEN 36.11581  1.22670345  1.537183139  1.79835728 -0.03516368
#> 364.21   GEN 34.05974  0.27328985 -0.447941156  0.03139543  0.77920500
#> 402.7    GEN 27.47748 -0.12907269 -0.080086669  0.01934016 -0.36085862
#> 405.2    GEN 28.98663 -1.90936369  0.309047963  0.57682642  0.51163370
#> 406.12   GEN 32.68323  0.90781100 -1.733433781 -0.24223050 -0.38596144
#> 427.7    GEN 36.19020  0.42791957 -0.723190970 -0.85381724 -0.53089914
#> 450.3    GEN 36.19602  1.38026196  1.279525147  0.16025163  0.61270137
#> 506.2    GEN 33.26623 -0.33054261 -0.302588536 -1.58471588 -0.04659416
#> Canchan  GEN 27.00126  1.47802905  0.380553178  1.67423900  0.07718375
#> Desiree  GEN 16.15569 -3.64968796  1.720025405  0.43761089  0.04648011
#> Unica    GEN 39.10400  1.25331924 -2.817033826 -0.99510845 -0.64366599
#> Ayac     ENV 23.70254 -2.29611851  0.966037760  1.95959116  2.75548057
#> Hyo-02   ENV 45.73082  3.85283195 -5.093371615  1.16967118 -0.08985538
#> LM-02    ENV 34.64462 -1.14575146 -0.881093222 -4.56547274  0.55159099
#> LM-03    ENV 53.83493  5.34625518  4.265275487 -0.14143931 -0.11714533
#> SR-02    ENV 14.95128 -2.58678337  0.660309540  0.89096920 -3.25055305
#> SR-03    ENV 11.15328 -3.17043379  0.082842050  0.68668051  0.15048221
#>                 PC5
#> 102.18  -0.04364115
#> 104.22   0.95312506
#> 121.31  -1.30661916
#> 141.28  -0.25996142
#> 157.26  -0.59719268
#> 163.9    0.18563390
#> 221.19  -0.57504816
#> 233.11   0.65754266
#> 235.6   -0.40273415
#> 241.2    0.07555258
#> 255.7   -0.46344763
#> 314.12   0.54406154
#> 317.6    0.39627052
#> 319.20   0.29657050
#> 320.16   2.29506737
#> 342.15  -0.10776433
#> 346.2   -0.12738693
#> 351.26   0.30191335
#> 364.21  -0.95811256
#> 402.7   -0.28473777
#> 405.2   -0.34397623
#> 406.12  -0.49796296
#> 427.7    1.00677993
#> 450.3   -0.34325251
#> 506.2    0.87807441
#> Canchan  0.49381313
#> Desiree -0.86767477
#> Unica   -0.90489253
#> Ayac     1.67177210
#> Hyo-02   0.01540152
#> LM-02    0.52350416
#> LM-03   -0.40285728
#> SR-02    1.37283488
#> SR-03   -3.18065538

# G*E matrix (deviations from mean)
array(model$genXenv, dim(model$genXenv), dimnames(model$genXenv))
#>          ENV
#> GEN              Ayac      Hyo-02       LM-02       LM-03        SR-02
#>   102.18    5.5726162 -12.4918224   1.7425251  -2.7070438   2.91734869
#>   104.22   -2.8712076   7.1684102   3.9336218  -4.0358373   0.47881580
#>   121.31    0.3255230  -3.8666836   4.3182811  10.4366135 -11.88343843
#>   141.28   -0.9451837   5.6454825  -9.7806639  14.6463104  -4.80337115
#>   157.26  -10.3149711 -10.6241677   4.2336365  16.8683612   2.71710210
#>   163.9     3.0874931  -6.9416721   3.4963790 -12.5533271   7.01688164
#>   221.19   -0.6041752  -6.0090018   4.0648518  -2.6974743   1.27671246
#>   233.11    2.5837535   6.8277609  -3.4440645  -4.4985717   0.19989490
#>   235.6    -1.7541523  19.8225025  -2.2394463  -5.6643239  -8.11400542
#>   241.2     1.0710975  -5.3831118   5.4253097  -3.2588271   0.46433086
#>   255.7     2.4443155   1.3860497  -1.8857757 -12.9626594   4.31373929
#>   314.12   -3.8812099   6.2098482   2.3577759   5.9071782  -3.92419060
#>   317.6    -1.7450319   3.0388540   3.0448064   5.5211634  -4.79271565
#>   319.20   -6.0155949   2.8477540  -9.7697504  24.8850017  -1.82949467
#>   320.16   10.9481796 -10.2982108   4.9608280  -6.2233088   2.99984918
#>   342.15    0.8508002  -0.3338618  -2.4575390 -10.3783871   7.29753151
#>   346.2     4.7000495  -6.2178087  -2.2612391 -14.9700672   9.90123888
#>   351.26    2.6002030  -0.9918665 -10.8315931  12.7429121  -0.02713985
#>   364.21   -0.4533734   3.2864208  -0.1335527  -0.1592533  -4.82292664
#>   402.7    -1.2134573  -0.0387229  -0.2179557  -0.8774011   1.08032472
#>   405.2     6.6477681  -8.3071271  -0.6159895  -8.8927189   3.52179705
#>   406.12   -6.1296667  12.0703469   1.1195092  -2.2601009  -3.13776595
#>   427.7    -3.1340922   4.3967072   4.2792028  -1.0194744   0.76266844
#>   450.3    -0.5047010  -1.0720791  -3.2821761  12.8806007  -5.04562407
#>   506.2    -1.2991912  -1.5682154   8.3142802  -3.1819279   0.60021498
#>   Canchan   1.2929442   5.7152780  -9.3713622   9.0803035  -1.65332869
#>   Desiree   9.5767845 -22.3280421   0.2396387 -11.8935722   9.62433886
#>   Unica   -10.8355195  18.0569790   4.7604622  -4.7341684  -5.13878822
#>          ENV
#> GEN             SR-03
#>   102.18    4.9663762
#>   104.22   -4.6738028
#>   121.31    0.6697043
#>   141.28   -4.7625741
#>   157.26   -2.8799609
#>   163.9     5.8942454
#>   221.19    3.9690870
#>   233.11   -1.6687730
#>   235.6    -2.0505746
#>   241.2     1.6812008
#>   255.7     6.7043306
#>   314.12   -6.6694018
#>   317.6    -5.0670763
#>   319.20  -10.1179157
#>   320.16   -2.3873373
#>   342.15    5.0214562
#>   346.2     8.8478267
#>   351.26   -3.4925156
#>   364.21    2.2826853
#>   402.7     1.2672123
#>   405.2     7.6462704
#>   406.12   -1.6623226
#>   427.7    -5.2850119
#>   450.3    -2.9760204
#>   506.2    -2.8651608
#>   Canchan  -5.0638348
#>   Desiree  14.7808522
#>   Unica    -2.1089651

# With default n (N') and default ssi.method (farshadfar)
DZ.AMMI(model)
#>                 DZ SSI rDZ rY    means
#> 102.18  0.26393535  37  14 23 26.31947
#> 104.22  0.22971564  21   8 13 31.28887
#> 121.31  0.32031744  34  19 15 30.10174
#> 141.28  0.39838535  23  22  1 39.75624
#> 157.26  0.53822924  33  28  5 36.95181
#> 163.9   0.26659011  42  15 27 21.41747
#> 221.19  0.19563325  29   3 26 22.98480
#> 233.11  0.25167755  27  10 17 28.66655
#> 235.6   0.46581370  28  24  4 38.63477
#> 241.2   0.21481887  28   6 22 26.34039
#> 255.7   0.30862904  31  17 14 30.58975
#> 314.12  0.22603261  25   7 18 28.17335
#> 317.6   0.20224771  14   5  9 35.32583
#> 319.20  0.50675112  29  26  3 38.75767
#> 320.16  0.23280596  30   9 21 26.34808
#> 342.15  0.25989774  36  12 24 26.01336
#> 346.2   0.37125512  45  20 25 23.84175
#> 351.26  0.43805896  31  23  8 36.11581
#> 364.21  0.07409309  12   2 10 34.05974
#> 402.7   0.02004533  20   1 19 27.47748
#> 405.2   0.26238837  29  13 16 28.98663
#> 406.12  0.28179394  28  16 12 32.68323
#> 427.7   0.20176581  11   4  7 36.19020
#> 450.3   0.25465368  17  11  6 36.19602
#> 506.2   0.30899851  29  18 11 33.26623
#> Canchan 0.37201039  41  21 20 27.00126
#> Desiree 0.52005815  55  27 28 16.15569
#> Unica   0.48083049  27  25  2 39.10400

# With n = 4 and default ssi.method (farshadfar)
DZ.AMMI(model, n = 4)
#>                 DZ SSI rDZ rY    means
#> 102.18  0.28722309  33  10 23 26.31947
#> 104.22  0.25160706  21   8 13 31.28887
#> 121.31  0.60785568  42  27 15 30.10174
#> 141.28  0.40268829  21  20  1 39.75624
#> 157.26  0.70597721  33  28  5 36.95181
#> 163.9   0.29151868  39  12 27 21.41747
#> 221.19  0.19743603  29   3 26 22.98480
#> 233.11  0.25722999  26   9 17 28.66655
#> 235.6   0.52269682  29  25  4 38.63477
#> 241.2   0.22585722  26   4 22 26.34039
#> 255.7   0.31747123  30  16 14 30.58975
#> 314.12  0.22646067  23   5 18 28.17335
#> 317.6   0.24329787  16   7  9 35.32583
#> 319.20  0.56961794  29  26  3 38.75767
#> 320.16  0.38533472  40  19 21 26.34808
#> 342.15  0.36788692  41  17 24 26.01336
#> 346.2   0.42725798  46  21 25 23.84175
#> 351.26  0.43813521  30  22  8 36.11581
#> 364.21  0.19569373  12   2 10 34.05974
#> 402.7   0.08624291  20   1 19 27.47748
#> 405.2   0.28808268  27  11 16 28.98663
#> 406.12  0.29573097  26  14 12 32.68323
#> 427.7   0.23651352  13   6  7 36.19020
#> 450.3   0.29177451  19  13  6 36.19602
#> 506.2   0.30918827  26  15 11 33.26623
#> Canchan 0.37244277  38  18 20 27.00126
#> Desiree 0.52017037  52  24 28 16.15569
#> Unica   0.50357109  25  23  2 39.10400

# With default n (N') and ssi.method = "rao"
DZ.AMMI(model, ssi.method = "rao")
#>                 DZ        SSI rDZ rY    means
#> 102.18  0.26393535  1.5536988  14 23 26.31947
#> 104.22  0.22971564  1.8193399   8 13 31.28887
#> 121.31  0.32031744  1.5545939  19 15 30.10174
#> 141.28  0.39838535  1.7570779  22  1 39.75624
#> 157.26  0.53822924  1.5459114  28  5 36.95181
#> 163.9   0.26659011  1.3869397  15 27 21.41747
#> 221.19  0.19563325  1.6878048   3 26 22.98480
#> 233.11  0.25167755  1.6641025  10 17 28.66655
#> 235.6   0.46581370  1.6538090  24  4 38.63477
#> 241.2   0.21481887  1.7134093   6 22 26.34039
#> 255.7   0.30862904  1.5922105  17 14 30.58975
#> 314.12  0.22603261  1.7307783   7 18 28.17335
#> 317.6   0.20224771  2.0595024   5  9 35.32583
#> 319.20  0.50675112  1.6259792  26  3 38.75767
#> 320.16  0.23280596  1.6476346   9 21 26.34808
#> 342.15  0.25989774  1.5545233  12 24 26.01336
#> 346.2   0.37125512  1.2718506  20 25 23.84175
#> 351.26  0.43805896  1.5966462  23  8 36.11581
#> 364.21  0.07409309  3.5881882   2 10 34.05974
#> 402.7   0.02004533 10.0539968   1 19 27.47748
#> 405.2   0.26238837  1.6447637  13 16 28.98663
#> 406.12  0.28179394  1.7171135  16 12 32.68323
#> 427.7   0.20176581  2.0898536   4  7 36.19020
#> 450.3   0.25465368  1.9010808  11  6 36.19602
#> 506.2   0.30899851  1.6787677  18 11 33.26623
#> Canchan 0.37201039  1.3738642  21 20 27.00126
#> Desiree 0.52005815  0.8797586  27 28 16.15569
#> Unica   0.48083049  1.6568004  25  2 39.10400

# Changing the ratio of weights for Rao's SSI
DZ.AMMI(model, ssi.method = "rao", a = 0.43)
#>                 DZ       SSI rDZ rY    means
#> 102.18  0.26393535 1.1572429  14 23 26.31947
#> 104.22  0.22971564 1.3638258   8 13 31.28887
#> 121.31  0.32031744 1.2279220  19 15 30.10174
#> 141.28  0.39838535 1.4944208  22  1 39.75624
#> 157.26  0.53822924 1.3514985  28  5 36.95181
#> 163.9   0.26659011 0.9944318  15 27 21.41747
#> 221.19  0.19563325 1.1529329   3 26 22.98480
#> 233.11  0.25167755 1.2483375  10 17 28.66655
#> 235.6   0.46581370 1.4291726  24  4 38.63477
#> 241.2   0.21481887 1.2263072   6 22 26.34039
#> 255.7   0.30862904 1.2531668  17 14 30.58975
#> 314.12  0.22603261 1.2678419   7 18 28.17335
#> 317.6   0.20224771 1.5421234   5  9 35.32583
#> 319.20  0.50675112 1.4194898  26  3 38.75767
#> 320.16  0.23280596 1.1981670   9 21 26.34808
#> 342.15  0.25989774 1.1519083  12 24 26.01336
#> 346.2   0.37125512 0.9899993  20 25 23.84175
#> 351.26  0.43805896 1.3577771  23  8 36.11581
#> 364.21  0.07409309 2.1759278   2 10 34.05974
#> 402.7   0.02004533 4.8338929   1 19 27.47748
#> 405.2   0.26238837 1.2459704  13 16 28.98663
#> 406.12  0.28179394 1.3457828  16 12 32.68323
#> 427.7   0.20176581 1.5712389   4  7 36.19020
#> 450.3   0.25465368 1.4901748  11  6 36.19602
#> 506.2   0.30899851 1.3401295  18 11 33.26623
#> Canchan 0.37201039 1.0925852  21 20 27.00126
#> Desiree 0.52005815 0.6785528  27 28 16.15569
#> Unica   0.48083049 1.4391795  25  2 39.10400