EV.AMMI computes the Sums of the Averages of the Squared Eigenvector Values (EV) (Zobel 1994) considering all significant interaction principal components (IPCs) in the AMMI model. Using EV, the Simultaneous Selection Index for Yield and Stability (SSI) is also calculated according to the argument ssi.method.

EV.AMMI(model, n, alpha = 0.05, ssi.method = c("farshadfar", "rao"), a = 1)

Arguments

model

The AMMI model (An object of class AMMI generated by AMMI).

n

The number of principal components to be considered for computation. The default value is the number of significant IPCs.

alpha

Type I error probability (Significance level) to be considered to identify the number of significant IPCs.

ssi.method

The method for the computation of simultaneous selection index. Either "farshadfar" or "rao" (See SSI).

a

The ratio of the weights given to the stability components for computation of SSI when method = "rao" (See SSI).

Value

A data frame with the following columns:

EV

The EV values.

SSI

The computed values of simultaneous selection index for yield and stability.

rEV

The ranks of EV values.

rY

The ranks of the mean yield of genotypes.

means

The mean yield of the genotypes.

The names of the genotypes are indicated as the row names of the data frame.

Details

The Averages of the Squared Eigenvector Values (\(EV\)) (Zobel 1994) is computed as follows:

\[EV = \sum_{n=1}^{N'}\frac{\gamma_{in}^2}{N'}\]

Where, \(N'\) is the number of significant IPCs (number of IPC that were retained in the AMMI model via F tests); and \(\gamma_{in}\) is the eigenvector value for \(i\)th genotype.

References

Zobel RW (1994). “Stress resistance and root systems.” In Proceedings of the Workshop on Adaptation of Plants to Soil Stress. 1-4 August, 1993. INTSORMIL Publication 94-2, 80--99. Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln.

See also

Examples

library(agricolae)
data(plrv)

# AMMI model
model <- with(plrv, AMMI(Locality, Genotype, Rep, Yield, console = FALSE))

# ANOVA
model$ANOVA
#> Analysis of Variance Table
#> 
#> Response: Y
#>            Df Sum Sq Mean Sq  F value    Pr(>F)    
#> ENV         5 122284 24456.9 257.0382  9.08e-12 ***
#> REP(ENV)   12   1142    95.1   2.5694  0.002889 ** 
#> GEN        27  17533   649.4  17.5359 < 2.2e-16 ***
#> ENV:GEN   135  23762   176.0   4.7531 < 2.2e-16 ***
#> Residuals 324  11998    37.0                       
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

# IPC F test
model$analysis
#>     percent  acum Df     Sum.Sq   Mean.Sq F.value   Pr.F
#> PC1    56.3  56.3 31 13368.5954 431.24501   11.65 0.0000
#> PC2    27.1  83.3 29  6427.5799 221.64069    5.99 0.0000
#> PC3     9.4  92.7 27  2241.9398  83.03481    2.24 0.0005
#> PC4     4.3  97.1 25  1027.5785  41.10314    1.11 0.3286
#> PC5     2.9 100.0 23   696.1012  30.26527    0.82 0.7059

# Mean yield and IPC scores
model$biplot
#>         type    Yield         PC1          PC2         PC3         PC4
#> 102.18   GEN 26.31947 -1.50828851  1.258765244 -0.19220309  0.48738861
#> 104.22   GEN 31.28887  0.32517729 -1.297024517 -0.63695749 -0.44159957
#> 121.31   GEN 30.10174  0.95604605  1.143461054 -1.28777348  2.22246913
#> 141.28   GEN 39.75624  2.11153737  0.817810467  1.45527701  0.25257620
#> 157.26   GEN 36.95181  1.05139017  2.461179974 -1.97208942 -1.96538800
#> 163.9    GEN 21.41747 -2.12407441 -0.284381234 -0.21791137 -0.50743629
#> 221.19   GEN 22.98480 -0.84981828  0.347983673 -0.82400783 -0.11451944
#> 233.11   GEN 28.66655  0.07554203 -1.046497338  1.04040485  0.22868362
#> 235.6    GEN 38.63477  1.20102029 -2.816581184  0.80975361  1.02013062
#> 241.2    GEN 26.34039 -0.79948495  0.220768053 -0.98538801  0.30004421
#> 255.7    GEN 30.58975 -1.49543817 -1.186549449  0.92552519 -0.32009239
#> 314.12   GEN 28.17335  1.39335380 -0.332786322 -0.73226877  0.05987348
#> 317.6    GEN 35.32583  1.05170769  0.002555823 -0.81561907  0.58180433
#> 319.20   GEN 38.75767  3.08338144  1.995946966  0.87971668 -1.11908943
#> 320.16   GEN 26.34808 -1.55737097  0.732314249 -0.41432567  1.32097009
#> 342.15   GEN 26.01336 -1.35880873 -0.741980068  0.87480105 -1.12013125
#> 346.2    GEN 23.84175 -2.48453928 -0.397045286  1.07091711 -0.90974484
#> 351.26   GEN 36.11581  1.22670345  1.537183139  1.79835728 -0.03516368
#> 364.21   GEN 34.05974  0.27328985 -0.447941156  0.03139543  0.77920500
#> 402.7    GEN 27.47748 -0.12907269 -0.080086669  0.01934016 -0.36085862
#> 405.2    GEN 28.98663 -1.90936369  0.309047963  0.57682642  0.51163370
#> 406.12   GEN 32.68323  0.90781100 -1.733433781 -0.24223050 -0.38596144
#> 427.7    GEN 36.19020  0.42791957 -0.723190970 -0.85381724 -0.53089914
#> 450.3    GEN 36.19602  1.38026196  1.279525147  0.16025163  0.61270137
#> 506.2    GEN 33.26623 -0.33054261 -0.302588536 -1.58471588 -0.04659416
#> Canchan  GEN 27.00126  1.47802905  0.380553178  1.67423900  0.07718375
#> Desiree  GEN 16.15569 -3.64968796  1.720025405  0.43761089  0.04648011
#> Unica    GEN 39.10400  1.25331924 -2.817033826 -0.99510845 -0.64366599
#> Ayac     ENV 23.70254 -2.29611851  0.966037760  1.95959116  2.75548057
#> Hyo-02   ENV 45.73082  3.85283195 -5.093371615  1.16967118 -0.08985538
#> LM-02    ENV 34.64462 -1.14575146 -0.881093222 -4.56547274  0.55159099
#> LM-03    ENV 53.83493  5.34625518  4.265275487 -0.14143931 -0.11714533
#> SR-02    ENV 14.95128 -2.58678337  0.660309540  0.89096920 -3.25055305
#> SR-03    ENV 11.15328 -3.17043379  0.082842050  0.68668051  0.15048221
#>                 PC5
#> 102.18  -0.04364115
#> 104.22   0.95312506
#> 121.31  -1.30661916
#> 141.28  -0.25996142
#> 157.26  -0.59719268
#> 163.9    0.18563390
#> 221.19  -0.57504816
#> 233.11   0.65754266
#> 235.6   -0.40273415
#> 241.2    0.07555258
#> 255.7   -0.46344763
#> 314.12   0.54406154
#> 317.6    0.39627052
#> 319.20   0.29657050
#> 320.16   2.29506737
#> 342.15  -0.10776433
#> 346.2   -0.12738693
#> 351.26   0.30191335
#> 364.21  -0.95811256
#> 402.7   -0.28473777
#> 405.2   -0.34397623
#> 406.12  -0.49796296
#> 427.7    1.00677993
#> 450.3   -0.34325251
#> 506.2    0.87807441
#> Canchan  0.49381313
#> Desiree -0.86767477
#> Unica   -0.90489253
#> Ayac     1.67177210
#> Hyo-02   0.01540152
#> LM-02    0.52350416
#> LM-03   -0.40285728
#> SR-02    1.37283488
#> SR-03   -3.18065538

# G*E matrix (deviations from mean)
array(model$genXenv, dim(model$genXenv), dimnames(model$genXenv))
#>          ENV
#> GEN              Ayac      Hyo-02       LM-02       LM-03        SR-02
#>   102.18    5.5726162 -12.4918224   1.7425251  -2.7070438   2.91734869
#>   104.22   -2.8712076   7.1684102   3.9336218  -4.0358373   0.47881580
#>   121.31    0.3255230  -3.8666836   4.3182811  10.4366135 -11.88343843
#>   141.28   -0.9451837   5.6454825  -9.7806639  14.6463104  -4.80337115
#>   157.26  -10.3149711 -10.6241677   4.2336365  16.8683612   2.71710210
#>   163.9     3.0874931  -6.9416721   3.4963790 -12.5533271   7.01688164
#>   221.19   -0.6041752  -6.0090018   4.0648518  -2.6974743   1.27671246
#>   233.11    2.5837535   6.8277609  -3.4440645  -4.4985717   0.19989490
#>   235.6    -1.7541523  19.8225025  -2.2394463  -5.6643239  -8.11400542
#>   241.2     1.0710975  -5.3831118   5.4253097  -3.2588271   0.46433086
#>   255.7     2.4443155   1.3860497  -1.8857757 -12.9626594   4.31373929
#>   314.12   -3.8812099   6.2098482   2.3577759   5.9071782  -3.92419060
#>   317.6    -1.7450319   3.0388540   3.0448064   5.5211634  -4.79271565
#>   319.20   -6.0155949   2.8477540  -9.7697504  24.8850017  -1.82949467
#>   320.16   10.9481796 -10.2982108   4.9608280  -6.2233088   2.99984918
#>   342.15    0.8508002  -0.3338618  -2.4575390 -10.3783871   7.29753151
#>   346.2     4.7000495  -6.2178087  -2.2612391 -14.9700672   9.90123888
#>   351.26    2.6002030  -0.9918665 -10.8315931  12.7429121  -0.02713985
#>   364.21   -0.4533734   3.2864208  -0.1335527  -0.1592533  -4.82292664
#>   402.7    -1.2134573  -0.0387229  -0.2179557  -0.8774011   1.08032472
#>   405.2     6.6477681  -8.3071271  -0.6159895  -8.8927189   3.52179705
#>   406.12   -6.1296667  12.0703469   1.1195092  -2.2601009  -3.13776595
#>   427.7    -3.1340922   4.3967072   4.2792028  -1.0194744   0.76266844
#>   450.3    -0.5047010  -1.0720791  -3.2821761  12.8806007  -5.04562407
#>   506.2    -1.2991912  -1.5682154   8.3142802  -3.1819279   0.60021498
#>   Canchan   1.2929442   5.7152780  -9.3713622   9.0803035  -1.65332869
#>   Desiree   9.5767845 -22.3280421   0.2396387 -11.8935722   9.62433886
#>   Unica   -10.8355195  18.0569790   4.7604622  -4.7341684  -5.13878822
#>          ENV
#> GEN             SR-03
#>   102.18    4.9663762
#>   104.22   -4.6738028
#>   121.31    0.6697043
#>   141.28   -4.7625741
#>   157.26   -2.8799609
#>   163.9     5.8942454
#>   221.19    3.9690870
#>   233.11   -1.6687730
#>   235.6    -2.0505746
#>   241.2     1.6812008
#>   255.7     6.7043306
#>   314.12   -6.6694018
#>   317.6    -5.0670763
#>   319.20  -10.1179157
#>   320.16   -2.3873373
#>   342.15    5.0214562
#>   346.2     8.8478267
#>   351.26   -3.4925156
#>   364.21    2.2826853
#>   402.7     1.2672123
#>   405.2     7.6462704
#>   406.12   -1.6623226
#>   427.7    -5.2850119
#>   450.3    -2.9760204
#>   506.2    -2.8651608
#>   Canchan  -5.0638348
#>   Desiree  14.7808522
#>   Unica    -2.1089651

# With default n (N') and default ssi.method (farshadfar)
EV.AMMI(model)
#>                   EV SSI rEV rY    means
#> 102.18  0.0232206231  37  14 23 26.31947
#> 104.22  0.0175897578  21   8 13 31.28887
#> 121.31  0.0342010876  34  19 15 30.10174
#> 141.28  0.0529036285  23  22  1 39.75624
#> 157.26  0.0965635719  33  28  5 36.95181
#> 163.9   0.0236900961  42  15 27 21.41747
#> 221.19  0.0127574566  29   3 26 22.98480
#> 233.11  0.0211138628  27  10 17 28.66655
#> 235.6   0.0723274691  28  24  4 38.63477
#> 241.2   0.0153823821  28   6 22 26.34039
#> 255.7   0.0317506280  31  17 14 30.58975
#> 314.12  0.0170302467  25   7 18 28.17335
#> 317.6   0.0136347120  14   5  9 35.32583
#> 319.20  0.0855988994  29  26  3 38.75767
#> 320.16  0.0180662044  30   9 21 26.34808
#> 342.15  0.0225156118  36  12 24 26.01336
#> 346.2   0.0459434537  45  20 25 23.84175
#> 351.26  0.0639652186  31  23  8 36.11581
#> 364.21  0.0018299284  12   2 10 34.05974
#> 402.7   0.0001339385  20   1 19 27.47748
#> 405.2   0.0229492190  29  13 16 28.98663
#> 406.12  0.0264692745  28  16 12 32.68323
#> 427.7   0.0135698145  11   4  7 36.19020
#> 450.3   0.0216161656  17  11  6 36.19602
#> 506.2   0.0318266934  29  18 11 33.26623
#> Canchan 0.0461305761  41  21 20 27.00126
#> Desiree 0.0901534938  55  27 28 16.15569
#> Unica   0.0770659860  27  25  2 39.10400

# With n = 4 and default ssi.method (farshadfar)
EV.AMMI(model, n = 4)
#>                  EV SSI rEV rY    means
#> 102.18  0.020624276  33  10 23 26.31947
#> 104.22  0.015826528  21   8 13 31.28887
#> 121.31  0.092372131  42  27 15 30.10174
#> 141.28  0.040539465  21  20  1 39.75624
#> 157.26  0.124600955  33  28  5 36.95181
#> 163.9   0.021245785  39  12 27 21.41747
#> 221.19  0.009745247  29   3 26 22.98480
#> 233.11  0.016541818  26   9 17 28.66655
#> 235.6   0.068302992  29  25  4 38.63477
#> 241.2   0.012752871  26   4 22 26.34039
#> 255.7   0.025196996  30  16 14 30.58975
#> 314.12  0.012821109  23   5 18 28.17335
#> 317.6   0.014798464  16   7  9 35.32583
#> 319.20  0.081116150  29  26  3 38.75767
#> 320.16  0.037120712  40  19 21 26.34808
#> 342.15  0.033835196  41  17 24 26.01336
#> 346.2   0.045637346  46  21 25 23.84175
#> 351.26  0.047990616  30  22  8 36.11581
#> 364.21  0.009574009  12   2 10 34.05974
#> 402.7   0.001859460  20   1 19 27.47748
#> 405.2   0.020747907  27  11 16 28.98663
#> 406.12  0.021864201  26  14 12 32.68323
#> 427.7   0.013984661  13   6  7 36.19020
#> 450.3   0.021283092  19  13  6 36.19602
#> 506.2   0.023899346  26  15 11 33.26623
#> Canchan 0.034678404  38  18 20 27.00126
#> Desiree 0.067644303  52  24 28 16.15569
#> Unica   0.063395960  25  23  2 39.10400

# With default n (N') and ssi.method = "rao"
EV.AMMI(model, ssi.method = "rao")
#>                   EV        SSI rEV rY    means
#> 102.18  0.0232206231  0.9920136  14 23 26.31947
#> 104.22  0.0175897578  1.1968926   8 13 31.28887
#> 121.31  0.0342010876  1.0723629  19 15 30.10174
#> 141.28  0.0529036285  1.3550266  22  1 39.75624
#> 157.26  0.0965635719  1.2370234  28  5 36.95181
#> 163.9   0.0236900961  0.8295284  15 27 21.41747
#> 221.19  0.0127574566  0.9930645   3 26 22.98480
#> 233.11  0.0211138628  1.0818975  10 17 28.66655
#> 235.6   0.0723274691  1.3026828  24  4 38.63477
#> 241.2   0.0153823821  1.0609011   6 22 26.34039
#> 255.7   0.0317506280  1.0952885  17 14 30.58975
#> 314.12  0.0170302467  1.1011148   7 18 28.17335
#> 317.6   0.0136347120  1.3797760   5  9 35.32583
#> 319.20  0.0855988994  1.3000274  26  3 38.75767
#> 320.16  0.0180662044  1.0311353   9 21 26.34808
#> 342.15  0.0225156118  0.9862240  12 24 26.01336
#> 346.2   0.0459434537  0.8450255  20 25 23.84175
#> 351.26  0.0639652186  1.2261684  23  8 36.11581
#> 364.21  0.0018299284  2.8090292   2 10 34.05974
#> 402.7   0.0001339385 24.1014741   1 19 27.47748
#> 405.2   0.0229492190  1.0805609  13 16 28.98663
#> 406.12  0.0264692745  1.1830798  16 12 32.68323
#> 427.7   0.0135698145  1.4090495   4  7 36.19020
#> 450.3   0.0216161656  1.3239797  11  6 36.19602
#> 506.2   0.0318266934  1.1823230  18 11 33.26623
#> Canchan 0.0461305761  0.9477687  21 20 27.00126
#> Desiree 0.0901534938  0.5612418  27 28 16.15569
#> Unica   0.0770659860  1.3153400  25  2 39.10400

# Changing the ratio of weights for Rao's SSI
EV.AMMI(model, ssi.method = "rao", a = 0.43)
#>                   EV        SSI rEV rY    means
#> 102.18  0.0232206231  0.9157183  14 23 26.31947
#> 104.22  0.0175897578  1.0961734   8 13 31.28887
#> 121.31  0.0342010876  1.0205626  19 15 30.10174
#> 141.28  0.0529036285  1.3215387  22  1 39.75624
#> 157.26  0.0965635719  1.2186766  28  5 36.95181
#> 163.9   0.0236900961  0.7547449  15 27 21.41747
#> 221.19  0.0127574566  0.8541946   3 26 22.98480
#> 233.11  0.0211138628  0.9979893  10 17 28.66655
#> 235.6   0.0723274691  1.2781883  24  4 38.63477
#> 241.2   0.0153823821  0.9457286   6 22 26.34039
#> 255.7   0.0317506280  1.0394903  17 14 30.58975
#> 314.12  0.0170302467  0.9970866   7 18 28.17335
#> 317.6   0.0136347120  1.2498410   5  9 35.32583
#> 319.20  0.0855988994  1.2793305  26  3 38.75767
#> 320.16  0.0180662044  0.9330723   9 21 26.34808
#> 342.15  0.0225156118  0.9075396  12 24 26.01336
#> 346.2   0.0459434537  0.8064645  20 25 23.84175
#> 351.26  0.0639652186  1.1984717  23  8 36.11581
#> 364.21  0.0018299284  1.8408895   2 10 34.05974
#> 402.7   0.0001339385 10.8743081   1 19 27.47748
#> 405.2   0.0229492190  1.0033632  13 16 28.98663
#> 406.12  0.0264692745  1.1161483  16 12 32.68323
#> 427.7   0.0135698145  1.2784931   4  7 36.19020
#> 450.3   0.0216161656  1.2420213  11  6 36.19602
#> 506.2   0.0318266934  1.1266582  18 11 33.26623
#> Canchan 0.0461305761  0.9093641  21 20 27.00126
#> Desiree 0.0901534938  0.5415905  27 28 16.15569
#> Unica   0.0770659860  1.2923516  25  2 39.10400