FA.AMMI computes the Stability Measure Based on Fitted AMMI Model (FA) (Raju 2002) considering all significant interaction principal components (IPCs) in the AMMI model. Using FA, the Simultaneous Selection Index for Yield and Stability (SSI) is also calculated according to the argument ssi.method.

FA.AMMI(model, n, alpha = 0.05, ssi.method = c("farshadfar", "rao"), a = 1)

Arguments

model

The AMMI model (An object of class AMMI generated by AMMI).

n

The number of principal components to be considered for computation. The default value is the number of significant IPCs.

alpha

Type I error probability (Significance level) to be considered to identify the number of significant IPCs.

ssi.method

The method for the computation of simultaneous selection index. Either "farshadfar" or "rao" (See SSI).

a

The ratio of the weights given to the stability components for computation of SSI when method = "rao" (See SSI).

Value

A data frame with the following columns:

FA

The FA values.

SSI

The computed values of simultaneous selection index for yield and stability.

rFA

The ranks of FA values.

rY

The ranks of the mean yield of genotypes.

means

The mean yield of the genotypes.

The names of the genotypes are indicated as the row names of the data frame.

Details

The Stability Measure Based on Fitted AMMI Model (\(FA\)) (Raju 2002) is computed as follows:

\[FA = \sum_{n=1}^{N'}\lambda_{n}^{2}\gamma_{in}^{2}\]

Where, \(N'\) is the number of significant IPCs (number of IPC that were retained in the AMMI model via F tests); \(\lambda_{n}\) is the singular value for \(n\)th IPC and correspondingly \(\lambda_{n}^{2}\) is its eigen value; and \(\gamma_{in}\) is the eigenvector value for \(i\)th genotype.

When \(N'\) is replaced by 1 (only first IPC axis is considered for computation), then the parameter \(FP\) can be estimated (Zali et al. 2012) .

\[FP = \lambda_{1}^{2}\gamma_{i1}^{2}\]

When \(N'\) is replaced by 2 (only first two IPC axes are considered for computation), then the parameter \(B\) can be estimated (Zali et al. 2012) .

\[B = \sum_{n=1}^{2}\lambda_{n}^{2}\gamma_{in}^{2}\]

When \(N'\) is replaced by \(N\) (All the IPC axes are considered for computation), then the parameter estimated is equivalent to Wricke's ecovalence (\(W_{(AMMI)}\)) (Wricke 1962; Zali et al. 2012) .

\[W_{(AMMI)} = \sum_{n=1}^{N}\lambda_{n}^{2}\gamma_{in}^{2}\]

References

Raju BMK (2002). “A study on AMMI model and its biplots.” Journal of the Indian Society of Agricultural Statistics, 55(3), 297--322.

Wricke G (1962). “On a method of understanding the biological diversity in field research.” Zeitschrift fur Pflanzenzuchtung, 47, 92--146.

Zali H, Farshadfar E, Sabaghpour SH, Karimizadeh R (2012). “Evaluation of genotype × environment interaction in chickpea using measures of stability from AMMI model.” Annals of Biological Research, 3(7), 3126--3136.

See also

Examples

library(agricolae)
data(plrv)

# AMMI model
model <- with(plrv, AMMI(Locality, Genotype, Rep, Yield, console = FALSE))

# ANOVA
model$ANOVA
#> Analysis of Variance Table
#> 
#> Response: Y
#>            Df Sum Sq Mean Sq  F value    Pr(>F)    
#> ENV         5 122284 24456.9 257.0382  9.08e-12 ***
#> REP(ENV)   12   1142    95.1   2.5694  0.002889 ** 
#> GEN        27  17533   649.4  17.5359 < 2.2e-16 ***
#> ENV:GEN   135  23762   176.0   4.7531 < 2.2e-16 ***
#> Residuals 324  11998    37.0                       
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

# IPC F test
model$analysis
#>     percent  acum Df     Sum.Sq   Mean.Sq F.value   Pr.F
#> PC1    56.3  56.3 31 13368.5954 431.24501   11.65 0.0000
#> PC2    27.1  83.3 29  6427.5799 221.64069    5.99 0.0000
#> PC3     9.4  92.7 27  2241.9398  83.03481    2.24 0.0005
#> PC4     4.3  97.1 25  1027.5785  41.10314    1.11 0.3286
#> PC5     2.9 100.0 23   696.1012  30.26527    0.82 0.7059

# Mean yield and IPC scores
model$biplot
#>         type    Yield         PC1          PC2         PC3         PC4
#> 102.18   GEN 26.31947 -1.50828851  1.258765244 -0.19220309  0.48738861
#> 104.22   GEN 31.28887  0.32517729 -1.297024517 -0.63695749 -0.44159957
#> 121.31   GEN 30.10174  0.95604605  1.143461054 -1.28777348  2.22246913
#> 141.28   GEN 39.75624  2.11153737  0.817810467  1.45527701  0.25257620
#> 157.26   GEN 36.95181  1.05139017  2.461179974 -1.97208942 -1.96538800
#> 163.9    GEN 21.41747 -2.12407441 -0.284381234 -0.21791137 -0.50743629
#> 221.19   GEN 22.98480 -0.84981828  0.347983673 -0.82400783 -0.11451944
#> 233.11   GEN 28.66655  0.07554203 -1.046497338  1.04040485  0.22868362
#> 235.6    GEN 38.63477  1.20102029 -2.816581184  0.80975361  1.02013062
#> 241.2    GEN 26.34039 -0.79948495  0.220768053 -0.98538801  0.30004421
#> 255.7    GEN 30.58975 -1.49543817 -1.186549449  0.92552519 -0.32009239
#> 314.12   GEN 28.17335  1.39335380 -0.332786322 -0.73226877  0.05987348
#> 317.6    GEN 35.32583  1.05170769  0.002555823 -0.81561907  0.58180433
#> 319.20   GEN 38.75767  3.08338144  1.995946966  0.87971668 -1.11908943
#> 320.16   GEN 26.34808 -1.55737097  0.732314249 -0.41432567  1.32097009
#> 342.15   GEN 26.01336 -1.35880873 -0.741980068  0.87480105 -1.12013125
#> 346.2    GEN 23.84175 -2.48453928 -0.397045286  1.07091711 -0.90974484
#> 351.26   GEN 36.11581  1.22670345  1.537183139  1.79835728 -0.03516368
#> 364.21   GEN 34.05974  0.27328985 -0.447941156  0.03139543  0.77920500
#> 402.7    GEN 27.47748 -0.12907269 -0.080086669  0.01934016 -0.36085862
#> 405.2    GEN 28.98663 -1.90936369  0.309047963  0.57682642  0.51163370
#> 406.12   GEN 32.68323  0.90781100 -1.733433781 -0.24223050 -0.38596144
#> 427.7    GEN 36.19020  0.42791957 -0.723190970 -0.85381724 -0.53089914
#> 450.3    GEN 36.19602  1.38026196  1.279525147  0.16025163  0.61270137
#> 506.2    GEN 33.26623 -0.33054261 -0.302588536 -1.58471588 -0.04659416
#> Canchan  GEN 27.00126  1.47802905  0.380553178  1.67423900  0.07718375
#> Desiree  GEN 16.15569 -3.64968796  1.720025405  0.43761089  0.04648011
#> Unica    GEN 39.10400  1.25331924 -2.817033826 -0.99510845 -0.64366599
#> Ayac     ENV 23.70254 -2.29611851  0.966037760  1.95959116  2.75548057
#> Hyo-02   ENV 45.73082  3.85283195 -5.093371615  1.16967118 -0.08985538
#> LM-02    ENV 34.64462 -1.14575146 -0.881093222 -4.56547274  0.55159099
#> LM-03    ENV 53.83493  5.34625518  4.265275487 -0.14143931 -0.11714533
#> SR-02    ENV 14.95128 -2.58678337  0.660309540  0.89096920 -3.25055305
#> SR-03    ENV 11.15328 -3.17043379  0.082842050  0.68668051  0.15048221
#>                 PC5
#> 102.18  -0.04364115
#> 104.22   0.95312506
#> 121.31  -1.30661916
#> 141.28  -0.25996142
#> 157.26  -0.59719268
#> 163.9    0.18563390
#> 221.19  -0.57504816
#> 233.11   0.65754266
#> 235.6   -0.40273415
#> 241.2    0.07555258
#> 255.7   -0.46344763
#> 314.12   0.54406154
#> 317.6    0.39627052
#> 319.20   0.29657050
#> 320.16   2.29506737
#> 342.15  -0.10776433
#> 346.2   -0.12738693
#> 351.26   0.30191335
#> 364.21  -0.95811256
#> 402.7   -0.28473777
#> 405.2   -0.34397623
#> 406.12  -0.49796296
#> 427.7    1.00677993
#> 450.3   -0.34325251
#> 506.2    0.87807441
#> Canchan  0.49381313
#> Desiree -0.86767477
#> Unica   -0.90489253
#> Ayac     1.67177210
#> Hyo-02   0.01540152
#> LM-02    0.52350416
#> LM-03   -0.40285728
#> SR-02    1.37283488
#> SR-03   -3.18065538

# G*E matrix (deviations from mean)
array(model$genXenv, dim(model$genXenv), dimnames(model$genXenv))
#>          ENV
#> GEN              Ayac      Hyo-02       LM-02       LM-03        SR-02
#>   102.18    5.5726162 -12.4918224   1.7425251  -2.7070438   2.91734869
#>   104.22   -2.8712076   7.1684102   3.9336218  -4.0358373   0.47881580
#>   121.31    0.3255230  -3.8666836   4.3182811  10.4366135 -11.88343843
#>   141.28   -0.9451837   5.6454825  -9.7806639  14.6463104  -4.80337115
#>   157.26  -10.3149711 -10.6241677   4.2336365  16.8683612   2.71710210
#>   163.9     3.0874931  -6.9416721   3.4963790 -12.5533271   7.01688164
#>   221.19   -0.6041752  -6.0090018   4.0648518  -2.6974743   1.27671246
#>   233.11    2.5837535   6.8277609  -3.4440645  -4.4985717   0.19989490
#>   235.6    -1.7541523  19.8225025  -2.2394463  -5.6643239  -8.11400542
#>   241.2     1.0710975  -5.3831118   5.4253097  -3.2588271   0.46433086
#>   255.7     2.4443155   1.3860497  -1.8857757 -12.9626594   4.31373929
#>   314.12   -3.8812099   6.2098482   2.3577759   5.9071782  -3.92419060
#>   317.6    -1.7450319   3.0388540   3.0448064   5.5211634  -4.79271565
#>   319.20   -6.0155949   2.8477540  -9.7697504  24.8850017  -1.82949467
#>   320.16   10.9481796 -10.2982108   4.9608280  -6.2233088   2.99984918
#>   342.15    0.8508002  -0.3338618  -2.4575390 -10.3783871   7.29753151
#>   346.2     4.7000495  -6.2178087  -2.2612391 -14.9700672   9.90123888
#>   351.26    2.6002030  -0.9918665 -10.8315931  12.7429121  -0.02713985
#>   364.21   -0.4533734   3.2864208  -0.1335527  -0.1592533  -4.82292664
#>   402.7    -1.2134573  -0.0387229  -0.2179557  -0.8774011   1.08032472
#>   405.2     6.6477681  -8.3071271  -0.6159895  -8.8927189   3.52179705
#>   406.12   -6.1296667  12.0703469   1.1195092  -2.2601009  -3.13776595
#>   427.7    -3.1340922   4.3967072   4.2792028  -1.0194744   0.76266844
#>   450.3    -0.5047010  -1.0720791  -3.2821761  12.8806007  -5.04562407
#>   506.2    -1.2991912  -1.5682154   8.3142802  -3.1819279   0.60021498
#>   Canchan   1.2929442   5.7152780  -9.3713622   9.0803035  -1.65332869
#>   Desiree   9.5767845 -22.3280421   0.2396387 -11.8935722   9.62433886
#>   Unica   -10.8355195  18.0569790   4.7604622  -4.7341684  -5.13878822
#>          ENV
#> GEN             SR-03
#>   102.18    4.9663762
#>   104.22   -4.6738028
#>   121.31    0.6697043
#>   141.28   -4.7625741
#>   157.26   -2.8799609
#>   163.9     5.8942454
#>   221.19    3.9690870
#>   233.11   -1.6687730
#>   235.6    -2.0505746
#>   241.2     1.6812008
#>   255.7     6.7043306
#>   314.12   -6.6694018
#>   317.6    -5.0670763
#>   319.20  -10.1179157
#>   320.16   -2.3873373
#>   342.15    5.0214562
#>   346.2     8.8478267
#>   351.26   -3.4925156
#>   364.21    2.2826853
#>   402.7     1.2672123
#>   405.2     7.6462704
#>   406.12   -1.6623226
#>   427.7    -5.2850119
#>   450.3    -2.9760204
#>   506.2    -2.8651608
#>   Canchan  -5.0638348
#>   Desiree  14.7808522
#>   Unica    -2.1089651

# With default n (N') and default ssi.method (farshadfar)
FA.AMMI(model)
#>                  FA SSI rFA rY    means
#> 102.18   226.214559  39  16 23 26.31947
#> 104.22    96.017789  22   9 13 31.28887
#> 121.31   166.871081  26  11 15 30.10174
#> 141.28   386.485026  23  22  1 39.75624
#> 157.26   460.491413  29  24  5 36.95181
#> 163.9    306.218437  48  21 27 21.41747
#> 221.19    72.376305  31   5 26 22.98480
#> 233.11    80.663694  24   7 17 28.66655
#> 235.6    481.419528  29  25  4 38.63477
#> 241.2     71.468008  26   4 22 26.34039
#> 255.7    237.870912  32  18 14 30.58975
#> 314.12   149.384801  28  10 18 28.17335
#> 317.6     92.022551  17   8  9 35.32583
#> 319.20   840.209886  30  27  3 38.75767
#> 320.16   191.423345  34  13 21 26.34808
#> 342.15   169.656627  36  12 24 26.01336
#> 346.2    450.721670  48  23 25 23.84175
#> 351.26   298.237108  28  20  8 36.11581
#> 364.21    14.300314  12   2 10 34.05974
#> 402.7      1.419225  20   1 19 27.47748
#> 405.2    256.882577  35  19 16 28.98663
#> 406.12   195.702153  26  14 12 32.68323
#> 427.7     56.361179  10   3  7 36.19020
#> 450.3    203.659148  21  15  6 36.19602
#> 506.2     80.183743  17   6 11 33.26623
#> Canchan  229.161607  37  17 20 27.00126
#> Desiree 1031.364210  56  28 28 16.15569
#> Unica    499.251489  28  26  2 39.10400

# With n = 4 and default ssi.method (farshadfar)
FA.AMMI(model, n = 4)
#>                  FA SSI rFA rY    means
#> 102.18   230.610963  39  16 23 26.31947
#> 104.22    99.626933  22   9 13 31.28887
#> 121.31   258.286270  33  18 15 30.10174
#> 141.28   387.665704  23  22  1 39.75624
#> 157.26   531.981114  31  26  5 36.95181
#> 163.9    310.983953  48  21 27 21.41747
#> 221.19    72.619025  30   4 26 22.98480
#> 233.11    81.631564  24   7 17 28.66655
#> 235.6    500.679624  28  24  4 38.63477
#> 241.2     73.134171  27   5 22 26.34039
#> 255.7    239.767170  31  17 14 30.58975
#> 314.12   149.451148  28  10 18 28.17335
#> 317.6     98.287259  17   8  9 35.32583
#> 319.20   863.387913  30  27  3 38.75767
#> 320.16   223.718164  35  14 21 26.34808
#> 342.15   192.877830  35  11 24 26.01336
#> 346.2    466.039106  48  23 25 23.84175
#> 351.26   298.259992  28  20  8 36.11581
#> 364.21    25.537314  12   2 10 34.05974
#> 402.7      3.829248  20   1 19 27.47748
#> 405.2    261.727258  35  19 16 28.98663
#> 406.12   198.459140  24  12 12 32.68323
#> 427.7     61.577580  10   3  7 36.19020
#> 450.3    210.606905  19  13  6 36.19602
#> 506.2     80.223923  17   6 11 33.26623
#> Canchan  229.271862  35  15 20 27.00126
#> Desiree 1031.404193  56  28 28 16.15569
#> Unica    506.919240  27  25  2 39.10400

# With default n (N') and ssi.method = "rao"
FA.AMMI(model, ssi.method = "rao")
#>                  FA        SSI rFA rY    means
#> 102.18   226.214559  0.9902913  16 23 26.31947
#> 104.22    96.017789  1.3314840   9 13 31.28887
#> 121.31   166.871081  1.1606028  11 15 30.10174
#> 141.28   386.485026  1.3736129  22  1 39.75624
#> 157.26   460.491413  1.2697440  24  5 36.95181
#> 163.9    306.218437  0.7959379  21 27 21.41747
#> 221.19    72.376305  1.1624072   5 26 22.98480
#> 233.11    80.663694  1.3052353   7 17 28.66655
#> 235.6    481.419528  1.3217963  25  4 38.63477
#> 241.2     71.468008  1.2770668   4 22 26.34039
#> 255.7    237.870912  1.1230515  18 14 30.58975
#> 314.12   149.384801  1.1186933  10 18 28.17335
#> 317.6     92.022551  1.4766266   8  9 35.32583
#> 319.20   840.209886  1.2992910  27  3 38.75767
#> 320.16   191.423345  1.0152386  13 21 26.34808
#> 342.15   169.656627  1.0243579  12 24 26.01336
#> 346.2    450.721670  0.8436895  23 25 23.84175
#> 351.26   298.237108  1.2777984  20  8 36.11581
#> 364.21    14.300314  3.2006702   2 10 34.05974
#> 402.7      1.419225 21.9563817   1 19 27.47748
#> 405.2    256.882577  1.0614812  19 16 28.98663
#> 406.12   195.702153  1.2183859  14 12 32.68323
#> 427.7     56.361179  1.7103246   3  7 36.19020
#> 450.3    203.659148  1.3269556  15  6 36.19602
#> 506.2     80.183743  1.4574286   6 11 33.26623
#> Canchan  229.161607  1.0108222  17 20 27.00126
#> Desiree 1031.364210  0.5557465  28 28 16.15569
#> Unica    499.251489  1.3348781  26  2 39.10400

# Changing the ratio of weights for Rao's SSI
FA.AMMI(model, ssi.method = "rao", a = 0.43)
#>                  FA       SSI rFA rY    means
#> 102.18   226.214559 0.9149776  16 23 26.31947
#> 104.22    96.017789 1.1540477   9 13 31.28887
#> 121.31   166.871081 1.0585058  11 15 30.10174
#> 141.28   386.485026 1.3295309  22  1 39.75624
#> 157.26   460.491413 1.2327465  24  5 36.95181
#> 163.9    306.218437 0.7403010  21 27 21.41747
#> 221.19    72.376305 0.9270120   5 26 22.98480
#> 233.11    80.663694 1.0940246   7 17 28.66655
#> 235.6    481.419528 1.2864071  25  4 38.63477
#> 241.2     71.468008 1.0386799   4 22 26.34039
#> 255.7    237.870912 1.0514284  18 14 30.58975
#> 314.12   149.384801 1.0046453  10 18 28.17335
#> 317.6     92.022551 1.2914868   8  9 35.32583
#> 319.20   840.209886 1.2790139  27  3 38.75767
#> 320.16   191.423345 0.9262367  13 21 26.34808
#> 342.15   169.656627 0.9239372  12 24 26.01336
#> 346.2    450.721670 0.8058900  23 25 23.84175
#> 351.26   298.237108 1.2206726  20  8 36.11581
#> 364.21    14.300314 2.0092951   2 10 34.05974
#> 402.7      1.419225 9.9519184   1 19 27.47748
#> 405.2    256.882577 0.9951589  19 16 28.98663
#> 406.12   195.702153 1.1313300  14 12 32.68323
#> 427.7     56.361179 1.4080414   3  7 36.19020
#> 450.3    203.659148 1.2433009  15  6 36.19602
#> 506.2     80.183743 1.2449536   6 11 33.26623
#> Canchan  229.161607 0.9364771  17 20 27.00126
#> Desiree 1031.364210 0.5392276  28 28 16.15569
#> Unica    499.251489 1.3007530  26  2 39.10400