MASV.AMMI computes the Modified AMMI Stability Value (MASV) (Zali et al. 2012; Ajay et al. 2019) (Please see Note) from a modified formula of AMMI Stability Value (ASV) (Purchase 1997) . This formula calculates AMMI stability value considering all significant interaction principal components (IPCs) in the AMMI model. Using MASV, the Simultaneous Selection Index for Yield and Stability (SSI) is also calculated according to the argument ssi.method.

MASV.AMMI(model, n, alpha = 0.05, ssi.method = c("farshadfar", "rao"), a = 1)

Arguments

model

The AMMI model (An object of class AMMI generated by AMMI).

n

The number of principal components to be considered for computation. The default value is the number of significant IPCs.

alpha

Type I error probability (Significance level) to be considered to identify the number of significant IPCs.

ssi.method

The method for the computation of simultaneous selection index. Either "farshadfar" or "rao" (See SSI).

a

The ratio of the weights given to the stability components for computation of SSI when method = "rao" (See SSI).

Value

A data frame with the following columns:

MASV

The MASV values.

SSI

The computed values of simultaneous selection index for yield and stability.

rMASV

The ranks of MASV values.

rY

The ranks of the mean yield of genotypes.

means

The mean yield of the genotypes.

The names of the genotypes are indicated as the row names of the data frame.

Details

The Modified AMMI Stability Value (\(MASV\)) (Ajay et al. 2019) is computed as follows:

\[MASV = \sqrt{\sum_{n=1}^{N'-1}\left (\frac{SSIPC_{n}}{SSIPC_{n+1}} \times PC_{n} \right )^2 + \left (PC_{N'} \right )^2}\]

Where, \(SSIPC_{1}\), \(SSIPC_{2}\), \(\cdots\), \(SSIPC_{n}\) are the sum of squares of the 1st, 2nd, ..., and \(n\)th IPC; and \(PC_{1}\), \(PC_{2}\), \(\cdots\), \(PC_{n}\) are the scores of 1st, 2nd, ..., and \(n\)th IPC.

Note

In Zali et al. (2012) , the formula for both AMMI stability value (ASV) was found to be erroneous, when compared with the original publications (Purchase 1997; Purchase et al. 1999; Purchase et al. 2000) .

ASV (Zali et al. 2012) \[ASV = \sqrt{\left ( \frac{SSIPC_{1}}{SSIPC_{2}} \right ) \times (PC_{1})^2 + \left (PC_{2} \right )^2}\]

ASV (Purchase 1997; Purchase et al. 1999; Purchase et al. 2000) \[ASV = \sqrt{\left (\frac{SSIPC_{1}}{SSIPC_{2}} \times PC_{1} \right )^2 + \left (PC_{2} \right )^2}\]

The authors believe that the proposed Modified AMMI stability value (MASV) in Zali et al. (2012) is also erroneous and have implemented the corrected one in MASV.AMMI (Ajay et al. 2019) .

MASV (Zali et al. 2012) \[MASV = \sqrt{\sum_{n=1}^{N'-1}\left ( \frac{SSIPC_{n}}{SSIPC_{n+1}} \right ) \times (PC_{n})^2 + \left (PC_{N'} \right )^2}\]

References

Ajay BC, Aravind J, Fiyaz RA, Kumar N, Lal C, Gangadhar K, Kona P, Dagla MC, Bera SK (2019). “Rectification of modified AMMI stability value (MASV).” Indian Journal of Genetics and Plant Breeding (The), 79, 726--731.

Purchase JL (1997). Parametric analysis to describe genotype × environment interaction and yield stability in winter wheat. Ph.D. Thesis, University of the Orange Free State.

Purchase JL, Hatting H, van Deventer CS (1999). “The use of the AMMI model and AMMI stability value to describe genotype x environment interaction and yield stability in winter wheat (Triticum aestivum L.).” In Proceedings of the Tenth Regional Wheat Workshop for Eastern, Central and Southern Africa, 14-18 September 1998. University of Stellenbosch, South Africa.

Purchase JL, Hatting H, van Deventer CS (2000). “Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance.” South African Journal of Plant and Soil, 17(3), 101--107.

Zali H, Farshadfar E, Sabaghpour SH, Karimizadeh R (2012). “Evaluation of genotype × environment interaction in chickpea using measures of stability from AMMI model.” Annals of Biological Research, 3(7), 3126--3136.

See also

Examples

library(agricolae)
data(plrv)

# AMMI model
model <- with(plrv, AMMI(Locality, Genotype, Rep, Yield, console = FALSE))

# ANOVA
model$ANOVA
#> Analysis of Variance Table
#> 
#> Response: Y
#>            Df Sum Sq Mean Sq  F value    Pr(>F)    
#> ENV         5 122284 24456.9 257.0382  9.08e-12 ***
#> REP(ENV)   12   1142    95.1   2.5694  0.002889 ** 
#> GEN        27  17533   649.4  17.5359 < 2.2e-16 ***
#> ENV:GEN   135  23762   176.0   4.7531 < 2.2e-16 ***
#> Residuals 324  11998    37.0                       
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

# IPC F test
model$analysis
#>     percent  acum Df     Sum.Sq   Mean.Sq F.value   Pr.F
#> PC1    56.3  56.3 31 13368.5954 431.24501   11.65 0.0000
#> PC2    27.1  83.3 29  6427.5799 221.64069    5.99 0.0000
#> PC3     9.4  92.7 27  2241.9398  83.03481    2.24 0.0005
#> PC4     4.3  97.1 25  1027.5785  41.10314    1.11 0.3286
#> PC5     2.9 100.0 23   696.1012  30.26527    0.82 0.7059

# Mean yield and IPC scores
model$biplot
#>         type    Yield         PC1          PC2         PC3         PC4
#> 102.18   GEN 26.31947 -1.50828851  1.258765244 -0.19220309  0.48738861
#> 104.22   GEN 31.28887  0.32517729 -1.297024517 -0.63695749 -0.44159957
#> 121.31   GEN 30.10174  0.95604605  1.143461054 -1.28777348  2.22246913
#> 141.28   GEN 39.75624  2.11153737  0.817810467  1.45527701  0.25257620
#> 157.26   GEN 36.95181  1.05139017  2.461179974 -1.97208942 -1.96538800
#> 163.9    GEN 21.41747 -2.12407441 -0.284381234 -0.21791137 -0.50743629
#> 221.19   GEN 22.98480 -0.84981828  0.347983673 -0.82400783 -0.11451944
#> 233.11   GEN 28.66655  0.07554203 -1.046497338  1.04040485  0.22868362
#> 235.6    GEN 38.63477  1.20102029 -2.816581184  0.80975361  1.02013062
#> 241.2    GEN 26.34039 -0.79948495  0.220768053 -0.98538801  0.30004421
#> 255.7    GEN 30.58975 -1.49543817 -1.186549449  0.92552519 -0.32009239
#> 314.12   GEN 28.17335  1.39335380 -0.332786322 -0.73226877  0.05987348
#> 317.6    GEN 35.32583  1.05170769  0.002555823 -0.81561907  0.58180433
#> 319.20   GEN 38.75767  3.08338144  1.995946966  0.87971668 -1.11908943
#> 320.16   GEN 26.34808 -1.55737097  0.732314249 -0.41432567  1.32097009
#> 342.15   GEN 26.01336 -1.35880873 -0.741980068  0.87480105 -1.12013125
#> 346.2    GEN 23.84175 -2.48453928 -0.397045286  1.07091711 -0.90974484
#> 351.26   GEN 36.11581  1.22670345  1.537183139  1.79835728 -0.03516368
#> 364.21   GEN 34.05974  0.27328985 -0.447941156  0.03139543  0.77920500
#> 402.7    GEN 27.47748 -0.12907269 -0.080086669  0.01934016 -0.36085862
#> 405.2    GEN 28.98663 -1.90936369  0.309047963  0.57682642  0.51163370
#> 406.12   GEN 32.68323  0.90781100 -1.733433781 -0.24223050 -0.38596144
#> 427.7    GEN 36.19020  0.42791957 -0.723190970 -0.85381724 -0.53089914
#> 450.3    GEN 36.19602  1.38026196  1.279525147  0.16025163  0.61270137
#> 506.2    GEN 33.26623 -0.33054261 -0.302588536 -1.58471588 -0.04659416
#> Canchan  GEN 27.00126  1.47802905  0.380553178  1.67423900  0.07718375
#> Desiree  GEN 16.15569 -3.64968796  1.720025405  0.43761089  0.04648011
#> Unica    GEN 39.10400  1.25331924 -2.817033826 -0.99510845 -0.64366599
#> Ayac     ENV 23.70254 -2.29611851  0.966037760  1.95959116  2.75548057
#> Hyo-02   ENV 45.73082  3.85283195 -5.093371615  1.16967118 -0.08985538
#> LM-02    ENV 34.64462 -1.14575146 -0.881093222 -4.56547274  0.55159099
#> LM-03    ENV 53.83493  5.34625518  4.265275487 -0.14143931 -0.11714533
#> SR-02    ENV 14.95128 -2.58678337  0.660309540  0.89096920 -3.25055305
#> SR-03    ENV 11.15328 -3.17043379  0.082842050  0.68668051  0.15048221
#>                 PC5
#> 102.18  -0.04364115
#> 104.22   0.95312506
#> 121.31  -1.30661916
#> 141.28  -0.25996142
#> 157.26  -0.59719268
#> 163.9    0.18563390
#> 221.19  -0.57504816
#> 233.11   0.65754266
#> 235.6   -0.40273415
#> 241.2    0.07555258
#> 255.7   -0.46344763
#> 314.12   0.54406154
#> 317.6    0.39627052
#> 319.20   0.29657050
#> 320.16   2.29506737
#> 342.15  -0.10776433
#> 346.2   -0.12738693
#> 351.26   0.30191335
#> 364.21  -0.95811256
#> 402.7   -0.28473777
#> 405.2   -0.34397623
#> 406.12  -0.49796296
#> 427.7    1.00677993
#> 450.3   -0.34325251
#> 506.2    0.87807441
#> Canchan  0.49381313
#> Desiree -0.86767477
#> Unica   -0.90489253
#> Ayac     1.67177210
#> Hyo-02   0.01540152
#> LM-02    0.52350416
#> LM-03   -0.40285728
#> SR-02    1.37283488
#> SR-03   -3.18065538

# G*E matrix (deviations from mean)
array(model$genXenv, dim(model$genXenv), dimnames(model$genXenv))
#>          ENV
#> GEN              Ayac      Hyo-02       LM-02       LM-03        SR-02
#>   102.18    5.5726162 -12.4918224   1.7425251  -2.7070438   2.91734869
#>   104.22   -2.8712076   7.1684102   3.9336218  -4.0358373   0.47881580
#>   121.31    0.3255230  -3.8666836   4.3182811  10.4366135 -11.88343843
#>   141.28   -0.9451837   5.6454825  -9.7806639  14.6463104  -4.80337115
#>   157.26  -10.3149711 -10.6241677   4.2336365  16.8683612   2.71710210
#>   163.9     3.0874931  -6.9416721   3.4963790 -12.5533271   7.01688164
#>   221.19   -0.6041752  -6.0090018   4.0648518  -2.6974743   1.27671246
#>   233.11    2.5837535   6.8277609  -3.4440645  -4.4985717   0.19989490
#>   235.6    -1.7541523  19.8225025  -2.2394463  -5.6643239  -8.11400542
#>   241.2     1.0710975  -5.3831118   5.4253097  -3.2588271   0.46433086
#>   255.7     2.4443155   1.3860497  -1.8857757 -12.9626594   4.31373929
#>   314.12   -3.8812099   6.2098482   2.3577759   5.9071782  -3.92419060
#>   317.6    -1.7450319   3.0388540   3.0448064   5.5211634  -4.79271565
#>   319.20   -6.0155949   2.8477540  -9.7697504  24.8850017  -1.82949467
#>   320.16   10.9481796 -10.2982108   4.9608280  -6.2233088   2.99984918
#>   342.15    0.8508002  -0.3338618  -2.4575390 -10.3783871   7.29753151
#>   346.2     4.7000495  -6.2178087  -2.2612391 -14.9700672   9.90123888
#>   351.26    2.6002030  -0.9918665 -10.8315931  12.7429121  -0.02713985
#>   364.21   -0.4533734   3.2864208  -0.1335527  -0.1592533  -4.82292664
#>   402.7    -1.2134573  -0.0387229  -0.2179557  -0.8774011   1.08032472
#>   405.2     6.6477681  -8.3071271  -0.6159895  -8.8927189   3.52179705
#>   406.12   -6.1296667  12.0703469   1.1195092  -2.2601009  -3.13776595
#>   427.7    -3.1340922   4.3967072   4.2792028  -1.0194744   0.76266844
#>   450.3    -0.5047010  -1.0720791  -3.2821761  12.8806007  -5.04562407
#>   506.2    -1.2991912  -1.5682154   8.3142802  -3.1819279   0.60021498
#>   Canchan   1.2929442   5.7152780  -9.3713622   9.0803035  -1.65332869
#>   Desiree   9.5767845 -22.3280421   0.2396387 -11.8935722   9.62433886
#>   Unica   -10.8355195  18.0569790   4.7604622  -4.7341684  -5.13878822
#>          ENV
#> GEN             SR-03
#>   102.18    4.9663762
#>   104.22   -4.6738028
#>   121.31    0.6697043
#>   141.28   -4.7625741
#>   157.26   -2.8799609
#>   163.9     5.8942454
#>   221.19    3.9690870
#>   233.11   -1.6687730
#>   235.6    -2.0505746
#>   241.2     1.6812008
#>   255.7     6.7043306
#>   314.12   -6.6694018
#>   317.6    -5.0670763
#>   319.20  -10.1179157
#>   320.16   -2.3873373
#>   342.15    5.0214562
#>   346.2     8.8478267
#>   351.26   -3.4925156
#>   364.21    2.2826853
#>   402.7     1.2672123
#>   405.2     7.6462704
#>   406.12   -1.6623226
#>   427.7    -5.2850119
#>   450.3    -2.9760204
#>   506.2    -2.8651608
#>   Canchan  -5.0638348
#>   Desiree  14.7808522
#>   Unica    -2.1089651

# With default n (N') and default ssi.method (farshadfar)
MASV.AMMI(model)
#>              MASV SSI rMASV rY    means
#> 102.18  4.7855876  42    19 23 26.31947
#> 104.22  3.8328358  25    12 13 31.28887
#> 121.31  4.0446758  29    14 15 30.10174
#> 141.28  5.1867706  21    20  1 39.75624
#> 157.26  7.6459224  29    24  5 36.95181
#> 163.9   4.4977055  43    16 27 21.41747
#> 221.19  2.1905344  31     5 26 22.98480
#> 233.11  3.1794345  26     9 17 28.66655
#> 235.6   8.4913020  29    25  4 38.63477
#> 241.2   2.0338659  26     4 22 26.34039
#> 255.7   4.7013868  32    18 14 30.58975
#> 314.12  3.1376678  26     8 18 28.17335
#> 317.6   2.3345492  15     6  9 35.32583
#> 319.20  8.6398087  30    27  3 38.75767
#> 320.16  3.8822326  34    13 21 26.34808
#> 342.15  3.6438425  34    10 24 26.01336
#> 346.2   5.3987165  47    22 25 23.84175
#> 351.26  5.4005468  31    23  8 36.11581
#> 364.21  1.4047546  12     2 10 34.05974
#> 402.7   0.3537818  20     1 19 27.47748
#> 405.2   4.1095727  31    15 16 28.98663
#> 406.12  5.3218165  33    21 12 32.68323
#> 427.7   2.4124676  14     7  7 36.19020
#> 450.3   4.6608954  23    17  6 36.19602
#> 506.2   1.9330143  14     3 11 33.26623
#> Canchan 3.6665608  31    11 20 27.00126
#> Desiree 9.0626072  56    28 28 16.15569
#> Unica   8.5447632  28    26  2 39.10400

# With n = 4 and default ssi.method (farshadfar)
MASV.AMMI(model, n = 4)
#>              MASV SSI rMASV rY    means
#> 102.18  4.8247593  39    16 23 26.31947
#> 104.22  4.0510711  23    10 13 31.28887
#> 121.31  5.2473236  34    19 15 30.10174
#> 141.28  5.9101338  23    22  1 39.75624
#> 157.26  8.7719153  30    25  5 36.95181
#> 163.9   4.5459209  41    14 27 21.41747
#> 221.19  2.7137861  29     3 26 22.98480
#> 233.11  3.7724279  26     9 17 28.66655
#> 235.6   8.6953084  28    24  4 38.63477
#> 241.2   2.8067193  26     4 22 26.34039
#> 255.7   5.0424601  32    18 14 30.58975
#> 314.12  3.4445298  25     7 18 28.17335
#> 317.6   2.8792321  14     5  9 35.32583
#> 319.20  8.8774217  30    27  3 38.75767
#> 320.16  4.1787768  33    12 21 26.34808
#> 342.15  4.1725070  35    11 24 26.01336
#> 346.2   5.8554350  46    21 25 23.84175
#> 351.26  6.4286626  31    23  8 36.11581
#> 364.21  1.6075453  12     2 10 34.05974
#> 402.7   0.5067415  20     1 19 27.47748
#> 405.2   4.2896919  29    13 16 28.98663
#> 406.12  5.3564283  32    20 12 32.68323
#> 427.7   2.9737174  13     6  7 36.19020
#> 450.3   4.7112537  21    15  6 36.19602
#> 506.2   3.6306466  19     8 11 33.26623
#> Canchan 4.8979104  37    17 20 27.00126
#> Desiree 9.1023670  56    28 28 16.15569
#> Unica   8.7835476  28    26  2 39.10400

# With default n (N') and ssi.method = "rao"
MASV.AMMI(model, ssi.method = "rao")
#>              MASV       SSI rMASV rY    means
#> 102.18  4.7855876 1.4296717    19 23 26.31947
#> 104.22  3.8328358 1.7337655    12 13 31.28887
#> 121.31  4.0446758 1.6576851    14 15 30.10174
#> 141.28  5.1867706 1.8235808    20  1 39.75624
#> 157.26  7.6459224 1.5625443    24  5 36.95181
#> 163.9   4.4977055 1.3064192    16 27 21.41747
#> 221.19  2.1905344 1.9979910     5 26 22.98480
#> 233.11  3.1794345 1.7949089     9 17 28.66655
#> 235.6   8.4913020 1.5818054    25  4 38.63477
#> 241.2   2.0338659 2.2035784     4 22 26.34039
#> 255.7   4.7013868 1.5791422    18 14 30.58975
#> 314.12  3.1376678 1.7902786     8 18 28.17335
#> 317.6   2.3345492 2.3233562     6  9 35.32583
#> 319.20  8.6398087 1.5802761    27  3 38.75767
#> 320.16  3.8822326 1.5635888    13 21 26.34808
#> 342.15  3.6438425 1.5987650    10 24 26.01336
#> 346.2   5.3987165 1.2839782    22 25 23.84175
#> 351.26  5.4005468 1.6840095    23  8 36.11581
#> 364.21  1.4047546 3.0575043     2 10 34.05974
#> 402.7   0.3537818 8.6266993     1 19 27.47748
#> 405.2   4.1095727 1.6106479    15 16 28.98663
#> 406.12  5.3218165 1.5795802    21 12 32.68323
#> 427.7   2.4124676 2.3137009     7  7 36.19020
#> 450.3   4.6608954 1.7669921    17  6 36.19602
#> 506.2   1.9330143 2.4995588     3 11 33.26623
#> Canchan 3.6665608 1.6263253    11 20 27.00126
#> Desiree 9.0626072 0.8285565    28 28 16.15569
#> Unica   8.5447632 1.5950896    26  2 39.10400

# Changing the ratio of weights for Rao's SSI
MASV.AMMI(model, ssi.method = "rao", a = 0.43)
#>              MASV       SSI rMASV rY    means
#> 102.18  4.7855876 1.1039112    19 23 26.31947
#> 104.22  3.8328358 1.3270288    12 13 31.28887
#> 121.31  4.0446758 1.2722512    14 15 30.10174
#> 141.28  5.1867706 1.5230171    20  1 39.75624
#> 157.26  7.6459224 1.3586506    24  5 36.95181
#> 163.9   4.4977055 0.9598080    16 27 21.41747
#> 221.19  2.1905344 1.2863130     5 26 22.98480
#> 233.11  3.1794345 1.3045842     9 17 28.66655
#> 235.6   8.4913020 1.3982110    25  4 38.63477
#> 241.2   2.0338659 1.4370799     4 22 26.34039
#> 255.7   4.7013868 1.2475474    18 14 30.58975
#> 314.12  3.1376678 1.2934270     8 18 28.17335
#> 317.6   2.3345492 1.6555805     6  9 35.32583
#> 319.20  8.6398087 1.3998375    27  3 38.75767
#> 320.16  3.8822326 1.1620273    13 21 26.34808
#> 342.15  3.6438425 1.1709323    10 24 26.01336
#> 346.2   5.3987165 0.9952142    22 25 23.84175
#> 351.26  5.4005468 1.3953434    23  8 36.11581
#> 364.21  1.4047546 1.9477337     2 10 34.05974
#> 402.7   0.3537818 4.2201550     1 19 27.47748
#> 405.2   4.1095727 1.2313006    15 16 28.98663
#> 406.12  5.3218165 1.2866435    21 12 32.68323
#> 427.7   2.4124676 1.6674932     7  7 36.19020
#> 450.3   4.6608954 1.4325166    17  6 36.19602
#> 506.2   1.9330143 1.6930696     3 11 33.26623
#> Canchan 3.6665608 1.2011435    11 20 27.00126
#> Desiree 9.0626072 0.6565359    28 28 16.15569
#> Unica   8.5447632 1.4126439    26  2 39.10400