R/ZA.AMMI.R
ZA.AMMI.Rd
ZA.AMMI
computes the Absolute Value of the Relative Contribution of
IPCs to the Interaction (\(\textrm{Z}_{\textrm{a}}\))
(Zali et al. 2012)
considering all significant
interaction principal components (IPCs) in the AMMI model. Using
\(\textrm{Z}_{\textrm{a}}\), the Simultaneous Selection Index for Yield
and Stability (SSI) is also calculated according to the argument
ssi.method
.
ZA.AMMI(model, n, alpha = 0.05, ssi.method = c("farshadfar", "rao"), a = 1)
The AMMI model (An object of class AMMI
generated by
AMMI
).
The number of principal components to be considered for computation. The default value is the number of significant IPCs.
Type I error probability (Significance level) to be considered to identify the number of significant IPCs.
The method for the computation of simultaneous selection
index. Either "farshadfar"
or "rao"
(See
SSI
).
The ratio of the weights given to the stability components for
computation of SSI when method = "rao"
(See
SSI
).
A data frame with the following columns:
The Za values.
The computed values of simultaneous selection index for yield and stability.
The ranks of Za values.
The ranks of the mean yield of genotypes.
The mean yield of the genotypes.
The names of the genotypes are indicated as the row names of the data frame.
The Absolute Value of the Relative Contribution of IPCs to the Interaction (\(Za\)) (Zali et al. 2012) is computed as follows:
\[Za = \sum_{i=1}^{N'}\left | \theta_{n}\gamma_{in} \right |\]
Where, \(N'\) is the number of significant IPCAs (number of IPC that were retained in the AMMI model via F tests); \(\gamma_{in}\) is the eigenvector value for \(i\)th genotype; and \(\theta_{n}\) is the percentage sum of squares explained by the \(n\)th principal component interaction effect..
Zali H, Farshadfar E, Sabaghpour SH, Karimizadeh R (2012). “Evaluation of genotype × environment interaction in chickpea using measures of stability from AMMI model.” Annals of Biological Research, 3(7), 3126--3136.
library(agricolae)
data(plrv)
# AMMI model
model <- with(plrv, AMMI(Locality, Genotype, Rep, Yield, console = FALSE))
# ANOVA
model$ANOVA
#> Analysis of Variance Table
#>
#> Response: Y
#> Df Sum Sq Mean Sq F value Pr(>F)
#> ENV 5 122284 24456.9 257.0382 9.08e-12 ***
#> REP(ENV) 12 1142 95.1 2.5694 0.002889 **
#> GEN 27 17533 649.4 17.5359 < 2.2e-16 ***
#> ENV:GEN 135 23762 176.0 4.7531 < 2.2e-16 ***
#> Residuals 324 11998 37.0
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# IPC F test
model$analysis
#> percent acum Df Sum.Sq Mean.Sq F.value Pr.F
#> PC1 56.3 56.3 31 13368.5954 431.24501 11.65 0.0000
#> PC2 27.1 83.3 29 6427.5799 221.64069 5.99 0.0000
#> PC3 9.4 92.7 27 2241.9398 83.03481 2.24 0.0005
#> PC4 4.3 97.1 25 1027.5785 41.10314 1.11 0.3286
#> PC5 2.9 100.0 23 696.1012 30.26527 0.82 0.7059
# Mean yield and IPC scores
model$biplot
#> type Yield PC1 PC2 PC3 PC4
#> 102.18 GEN 26.31947 -1.50828851 1.258765244 -0.19220309 0.48738861
#> 104.22 GEN 31.28887 0.32517729 -1.297024517 -0.63695749 -0.44159957
#> 121.31 GEN 30.10174 0.95604605 1.143461054 -1.28777348 2.22246913
#> 141.28 GEN 39.75624 2.11153737 0.817810467 1.45527701 0.25257620
#> 157.26 GEN 36.95181 1.05139017 2.461179974 -1.97208942 -1.96538800
#> 163.9 GEN 21.41747 -2.12407441 -0.284381234 -0.21791137 -0.50743629
#> 221.19 GEN 22.98480 -0.84981828 0.347983673 -0.82400783 -0.11451944
#> 233.11 GEN 28.66655 0.07554203 -1.046497338 1.04040485 0.22868362
#> 235.6 GEN 38.63477 1.20102029 -2.816581184 0.80975361 1.02013062
#> 241.2 GEN 26.34039 -0.79948495 0.220768053 -0.98538801 0.30004421
#> 255.7 GEN 30.58975 -1.49543817 -1.186549449 0.92552519 -0.32009239
#> 314.12 GEN 28.17335 1.39335380 -0.332786322 -0.73226877 0.05987348
#> 317.6 GEN 35.32583 1.05170769 0.002555823 -0.81561907 0.58180433
#> 319.20 GEN 38.75767 3.08338144 1.995946966 0.87971668 -1.11908943
#> 320.16 GEN 26.34808 -1.55737097 0.732314249 -0.41432567 1.32097009
#> 342.15 GEN 26.01336 -1.35880873 -0.741980068 0.87480105 -1.12013125
#> 346.2 GEN 23.84175 -2.48453928 -0.397045286 1.07091711 -0.90974484
#> 351.26 GEN 36.11581 1.22670345 1.537183139 1.79835728 -0.03516368
#> 364.21 GEN 34.05974 0.27328985 -0.447941156 0.03139543 0.77920500
#> 402.7 GEN 27.47748 -0.12907269 -0.080086669 0.01934016 -0.36085862
#> 405.2 GEN 28.98663 -1.90936369 0.309047963 0.57682642 0.51163370
#> 406.12 GEN 32.68323 0.90781100 -1.733433781 -0.24223050 -0.38596144
#> 427.7 GEN 36.19020 0.42791957 -0.723190970 -0.85381724 -0.53089914
#> 450.3 GEN 36.19602 1.38026196 1.279525147 0.16025163 0.61270137
#> 506.2 GEN 33.26623 -0.33054261 -0.302588536 -1.58471588 -0.04659416
#> Canchan GEN 27.00126 1.47802905 0.380553178 1.67423900 0.07718375
#> Desiree GEN 16.15569 -3.64968796 1.720025405 0.43761089 0.04648011
#> Unica GEN 39.10400 1.25331924 -2.817033826 -0.99510845 -0.64366599
#> Ayac ENV 23.70254 -2.29611851 0.966037760 1.95959116 2.75548057
#> Hyo-02 ENV 45.73082 3.85283195 -5.093371615 1.16967118 -0.08985538
#> LM-02 ENV 34.64462 -1.14575146 -0.881093222 -4.56547274 0.55159099
#> LM-03 ENV 53.83493 5.34625518 4.265275487 -0.14143931 -0.11714533
#> SR-02 ENV 14.95128 -2.58678337 0.660309540 0.89096920 -3.25055305
#> SR-03 ENV 11.15328 -3.17043379 0.082842050 0.68668051 0.15048221
#> PC5
#> 102.18 -0.04364115
#> 104.22 0.95312506
#> 121.31 -1.30661916
#> 141.28 -0.25996142
#> 157.26 -0.59719268
#> 163.9 0.18563390
#> 221.19 -0.57504816
#> 233.11 0.65754266
#> 235.6 -0.40273415
#> 241.2 0.07555258
#> 255.7 -0.46344763
#> 314.12 0.54406154
#> 317.6 0.39627052
#> 319.20 0.29657050
#> 320.16 2.29506737
#> 342.15 -0.10776433
#> 346.2 -0.12738693
#> 351.26 0.30191335
#> 364.21 -0.95811256
#> 402.7 -0.28473777
#> 405.2 -0.34397623
#> 406.12 -0.49796296
#> 427.7 1.00677993
#> 450.3 -0.34325251
#> 506.2 0.87807441
#> Canchan 0.49381313
#> Desiree -0.86767477
#> Unica -0.90489253
#> Ayac 1.67177210
#> Hyo-02 0.01540152
#> LM-02 0.52350416
#> LM-03 -0.40285728
#> SR-02 1.37283488
#> SR-03 -3.18065538
# G*E matrix (deviations from mean)
array(model$genXenv, dim(model$genXenv), dimnames(model$genXenv))
#> ENV
#> GEN Ayac Hyo-02 LM-02 LM-03 SR-02
#> 102.18 5.5726162 -12.4918224 1.7425251 -2.7070438 2.91734869
#> 104.22 -2.8712076 7.1684102 3.9336218 -4.0358373 0.47881580
#> 121.31 0.3255230 -3.8666836 4.3182811 10.4366135 -11.88343843
#> 141.28 -0.9451837 5.6454825 -9.7806639 14.6463104 -4.80337115
#> 157.26 -10.3149711 -10.6241677 4.2336365 16.8683612 2.71710210
#> 163.9 3.0874931 -6.9416721 3.4963790 -12.5533271 7.01688164
#> 221.19 -0.6041752 -6.0090018 4.0648518 -2.6974743 1.27671246
#> 233.11 2.5837535 6.8277609 -3.4440645 -4.4985717 0.19989490
#> 235.6 -1.7541523 19.8225025 -2.2394463 -5.6643239 -8.11400542
#> 241.2 1.0710975 -5.3831118 5.4253097 -3.2588271 0.46433086
#> 255.7 2.4443155 1.3860497 -1.8857757 -12.9626594 4.31373929
#> 314.12 -3.8812099 6.2098482 2.3577759 5.9071782 -3.92419060
#> 317.6 -1.7450319 3.0388540 3.0448064 5.5211634 -4.79271565
#> 319.20 -6.0155949 2.8477540 -9.7697504 24.8850017 -1.82949467
#> 320.16 10.9481796 -10.2982108 4.9608280 -6.2233088 2.99984918
#> 342.15 0.8508002 -0.3338618 -2.4575390 -10.3783871 7.29753151
#> 346.2 4.7000495 -6.2178087 -2.2612391 -14.9700672 9.90123888
#> 351.26 2.6002030 -0.9918665 -10.8315931 12.7429121 -0.02713985
#> 364.21 -0.4533734 3.2864208 -0.1335527 -0.1592533 -4.82292664
#> 402.7 -1.2134573 -0.0387229 -0.2179557 -0.8774011 1.08032472
#> 405.2 6.6477681 -8.3071271 -0.6159895 -8.8927189 3.52179705
#> 406.12 -6.1296667 12.0703469 1.1195092 -2.2601009 -3.13776595
#> 427.7 -3.1340922 4.3967072 4.2792028 -1.0194744 0.76266844
#> 450.3 -0.5047010 -1.0720791 -3.2821761 12.8806007 -5.04562407
#> 506.2 -1.2991912 -1.5682154 8.3142802 -3.1819279 0.60021498
#> Canchan 1.2929442 5.7152780 -9.3713622 9.0803035 -1.65332869
#> Desiree 9.5767845 -22.3280421 0.2396387 -11.8935722 9.62433886
#> Unica -10.8355195 18.0569790 4.7604622 -4.7341684 -5.13878822
#> ENV
#> GEN SR-03
#> 102.18 4.9663762
#> 104.22 -4.6738028
#> 121.31 0.6697043
#> 141.28 -4.7625741
#> 157.26 -2.8799609
#> 163.9 5.8942454
#> 221.19 3.9690870
#> 233.11 -1.6687730
#> 235.6 -2.0505746
#> 241.2 1.6812008
#> 255.7 6.7043306
#> 314.12 -6.6694018
#> 317.6 -5.0670763
#> 319.20 -10.1179157
#> 320.16 -2.3873373
#> 342.15 5.0214562
#> 346.2 8.8478267
#> 351.26 -3.4925156
#> 364.21 2.2826853
#> 402.7 1.2672123
#> 405.2 7.6462704
#> 406.12 -1.6623226
#> 427.7 -5.2850119
#> 450.3 -2.9760204
#> 506.2 -2.8651608
#> Canchan -5.0638348
#> Desiree 14.7808522
#> Unica -2.1089651
# With default n (N') and default ssi.method (farshadfar)
ZA.AMMI(model)
#> Za SSI rZa rY means
#> 102.18 0.15752787 41 18 23 26.31947
#> 104.22 0.08552245 20 7 13 31.28887
#> 121.31 0.13457796 26 11 15 30.10174
#> 141.28 0.20424009 23 22 1 39.75624
#> 157.26 0.20593889 28 23 5 36.95181
#> 163.9 0.16161024 46 19 27 21.41747
#> 221.19 0.08723440 34 8 26 22.98480
#> 233.11 0.06559491 21 4 17 28.66655
#> 235.6 0.20950908 29 25 4 38.63477
#> 241.2 0.08160010 28 6 22 26.34039
#> 255.7 0.16694984 34 20 14 30.58975
#> 314.12 0.12243347 28 10 18 28.17335
#> 317.6 0.08723605 18 9 9 35.32583
#> 319.20 0.30778801 30 27 3 38.75767
#> 320.16 0.14393358 35 14 21 26.34808
#> 342.15 0.13891478 37 13 24 26.01336
#> 346.2 0.20627243 49 24 25 23.84175
#> 351.26 0.17809076 29 21 8 36.11581
#> 364.21 0.03723882 12 2 10 34.05974
#> 402.7 0.01243185 20 1 19 27.47748
#> 405.2 0.15425031 33 17 16 28.98663
#> 406.12 0.13595705 24 12 12 32.68323
#> 427.7 0.07364374 12 5 7 36.19020
#> 450.3 0.14895835 22 16 6 36.19602
#> 506.2 0.06332050 14 3 11 33.26623
#> Canchan 0.14710608 35 15 20 27.00126
#> Desiree 0.32787182 56 28 28 16.15569
#> Unica 0.21646330 28 26 2 39.10400
# With n = 4 and default ssi.method (farshadfar)
ZA.AMMI(model, n = 4)
#> Za SSI rZa rY means
#> 102.18 0.16239946 41 18 23 26.31947
#> 104.22 0.08993636 21 8 13 31.28887
#> 121.31 0.15679216 30 15 15 30.10174
#> 141.28 0.20676466 23 22 1 39.75624
#> 157.26 0.22558350 31 26 5 36.95181
#> 163.9 0.16668221 46 19 27 21.41747
#> 221.19 0.08837906 33 7 26 22.98480
#> 233.11 0.06788066 21 4 17 28.66655
#> 235.6 0.21970557 28 24 4 38.63477
#> 241.2 0.08459913 28 6 22 26.34039
#> 255.7 0.17014926 34 20 14 30.58975
#> 314.12 0.12303192 28 10 18 28.17335
#> 317.6 0.09305134 18 9 9 35.32583
#> 319.20 0.31897363 30 27 3 38.75767
#> 320.16 0.15713705 37 16 21 26.34808
#> 342.15 0.15011080 37 13 24 26.01336
#> 346.2 0.21536559 48 23 25 23.84175
#> 351.26 0.17844223 29 21 8 36.11581
#> 364.21 0.04502719 12 2 10 34.05974
#> 402.7 0.01603874 20 1 19 27.47748
#> 405.2 0.15936424 33 17 16 28.98663
#> 406.12 0.13981485 23 11 12 32.68323
#> 427.7 0.07895023 12 5 7 36.19020
#> 450.3 0.15508247 20 14 6 36.19602
#> 506.2 0.06378622 14 3 11 33.26623
#> Canchan 0.14787755 32 12 20 27.00126
#> Desiree 0.32833640 56 28 28 16.15569
#> Unica 0.22289692 27 25 2 39.10400
# With default n (N') and ssi.method = "rao"
ZA.AMMI(model, ssi.method = "rao")
#> Za SSI rZa rY means
#> 102.18 0.15752787 1.4309653 18 23 26.31947
#> 104.22 0.08552245 2.0752658 7 13 31.28887
#> 121.31 0.13457796 1.6519700 11 15 30.10174
#> 141.28 0.20424009 1.7380721 22 1 39.75624
#> 157.26 0.20593889 1.6429878 23 5 36.95181
#> 163.9 0.16161024 1.2566633 19 27 21.41747
#> 221.19 0.08723440 1.7838011 8 26 22.98480
#> 233.11 0.06559491 2.3102920 4 17 28.66655
#> 235.6 0.20950908 1.6903953 25 4 38.63477
#> 241.2 0.08160010 1.9646329 6 22 26.34039
#> 255.7 0.16694984 1.5378736 20 14 30.58975
#> 314.12 0.12243347 1.6556010 10 18 28.17335
#> 317.6 0.08723605 2.1861684 9 9 35.32583
#> 319.20 0.30778801 1.5568815 27 3 38.75767
#> 320.16 0.14393358 1.4859985 14 21 26.34808
#> 342.15 0.13891478 1.4977340 13 24 26.01336
#> 346.2 0.20627243 1.2148178 24 25 23.84175
#> 351.26 0.17809076 1.6842433 21 8 36.11581
#> 364.21 0.03723882 3.5336141 2 10 34.05974
#> 402.7 0.01243185 8.1540882 1 19 27.47748
#> 405.2 0.15425031 1.5301007 17 16 28.98663
#> 406.12 0.13595705 1.7293399 12 12 32.68323
#> 427.7 0.07364374 2.4052596 5 7 36.19020
#> 450.3 0.14895835 1.7859494 16 6 36.19602
#> 506.2 0.06332050 2.5096775 3 11 33.26623
#> Canchan 0.14710608 1.4937760 15 20 27.00126
#> Desiree 0.32787182 0.8019725 28 28 16.15569
#> Unica 0.21646330 1.6918583 26 2 39.10400
# Changing the ratio of weights for Rao's SSI
ZA.AMMI(model, ssi.method = "rao", a = 0.43)
#> Za SSI rZa rY means
#> 102.18 0.15752787 1.1044675 18 23 26.31947
#> 104.22 0.08552245 1.4738739 7 13 31.28887
#> 121.31 0.13457796 1.2697937 11 15 30.10174
#> 141.28 0.20424009 1.4862483 22 1 39.75624
#> 157.26 0.20593889 1.3932413 23 5 36.95181
#> 163.9 0.16161024 0.9384129 19 27 21.41747
#> 221.19 0.08723440 1.1942113 8 26 22.98480
#> 233.11 0.06559491 1.5261989 4 17 28.66655
#> 235.6 0.20950908 1.4449047 25 4 38.63477
#> 241.2 0.08160010 1.3343333 6 22 26.34039
#> 255.7 0.16694984 1.2298019 20 14 30.58975
#> 314.12 0.12243347 1.2355156 10 18 28.17335
#> 317.6 0.08723605 1.5965898 9 9 35.32583
#> 319.20 0.30778801 1.3897778 27 3 38.75767
#> 320.16 0.14393358 1.1286635 14 21 26.34808
#> 342.15 0.13891478 1.1274889 13 24 26.01336
#> 346.2 0.20627243 0.9654752 24 25 23.84175
#> 351.26 0.17809076 1.3954439 21 8 36.11581
#> 364.21 0.03723882 2.1524610 2 10 34.05974
#> 402.7 0.01243185 4.0169322 1 19 27.47748
#> 405.2 0.15425031 1.1966653 17 16 28.98663
#> 406.12 0.13595705 1.3510402 12 12 32.68323
#> 427.7 0.07364374 1.7068634 5 7 36.19020
#> 450.3 0.14895835 1.4406683 16 6 36.19602
#> 506.2 0.06332050 1.6974207 3 11 33.26623
#> Canchan 0.14710608 1.1441472 15 20 27.00126
#> Desiree 0.32787182 0.6451047 28 28 16.15569
#> Unica 0.21646330 1.4542544 26 2 39.10400